Commit
Β·
5204c67
1
Parent(s):
f026dba
use Gante GPT2 code
Browse files
app.py
CHANGED
|
@@ -1,16 +1,14 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
-
from transformers import
|
| 4 |
import numpy as np
|
| 5 |
|
| 6 |
-
|
| 7 |
MODEL_NAME = "gpt2"
|
| 8 |
|
| 9 |
-
|
| 10 |
if __name__ == "__main__":
|
| 11 |
# Define your model and your tokenizer
|
| 12 |
-
tokenizer =
|
| 13 |
-
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
| 14 |
if tokenizer.pad_token_id is None:
|
| 15 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 16 |
model.config.pad_token_id = model.config.eos_token_id
|
|
@@ -28,70 +26,54 @@ if __name__ == "__main__":
|
|
| 28 |
"p < 1%": "red"
|
| 29 |
}
|
| 30 |
|
|
|
|
| 31 |
def get_tokens_and_labels(prompt):
|
| 32 |
"""
|
| 33 |
Given the prompt (text), return a list of tuples (decoded_token, label)
|
| 34 |
"""
|
| 35 |
inputs = tokenizer([prompt], return_tensors="pt")
|
| 36 |
outputs = model.generate(
|
| 37 |
-
**inputs, max_new_tokens=50, return_dict_in_generate=True, output_scores=True
|
| 38 |
)
|
| 39 |
# Important: don't forget to set `normalize_logits=True` to obtain normalized probabilities (i.e. sum(p) = 1)
|
| 40 |
transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, normalize_logits=True)
|
| 41 |
transition_proba = np.exp(transition_scores)
|
| 42 |
# We only have scores for the generated tokens, so pop out the prompt tokens
|
| 43 |
input_length = 1 if model.config.is_encoder_decoder else inputs.input_ids.shape[1]
|
| 44 |
-
|
| 45 |
-
generated_tokens = tokenizer.convert_ids_to_tokens(generated_ids[0])
|
| 46 |
|
| 47 |
-
#
|
| 48 |
-
|
| 49 |
-
if model.config.is_encoder_decoder:
|
| 50 |
-
highlighted_out = []
|
| 51 |
-
else:
|
| 52 |
-
input_tokens = tokenizer.convert_ids_to_tokens(inputs.input_ids)
|
| 53 |
-
highlighted_out = [(token.replace("β", " "), None) for token in input_tokens]
|
| 54 |
# Get the (decoded_token, label) pairs for the generated tokens
|
| 55 |
-
for token, proba in zip(generated_tokens, transition_proba[0]):
|
| 56 |
this_label = None
|
| 57 |
assert 0. <= proba <= 1.0
|
| 58 |
for min_proba, label in probs_to_label:
|
| 59 |
if proba >= min_proba:
|
| 60 |
this_label = label
|
| 61 |
break
|
| 62 |
-
highlighted_out.append((
|
| 63 |
|
| 64 |
return highlighted_out
|
| 65 |
|
|
|
|
| 66 |
demo = gr.Blocks()
|
| 67 |
with demo:
|
| 68 |
gr.Markdown(
|
| 69 |
"""
|
| 70 |
-
# π Color
|
| 71 |
-
|
| 72 |
This is a demo of how you can obtain the probabilities of each generated token, and use them to
|
| 73 |
-
color code the model output.
|
| 74 |
-
|
|
|
|
| 75 |
which was added in `transformers` v4.26.0.
|
| 76 |
-
|
| 77 |
-
β οΈ For instance, with the pre-populated input and its color-coded output, you can see that
|
| 78 |
-
`google/flan-t5-base` struggles with arithmetics.
|
| 79 |
-
|
| 80 |
-
π€ Feel free to clone this demo and modify it to your needs π€
|
| 81 |
"""
|
| 82 |
)
|
| 83 |
|
| 84 |
with gr.Row():
|
| 85 |
with gr.Column():
|
| 86 |
-
prompt = gr.Textbox(
|
| 87 |
-
|
| 88 |
-
lines=3,
|
| 89 |
-
value=(
|
| 90 |
-
"Answer the following question by reasoning step-by-step. The cafeteria had 23 apples. "
|
| 91 |
-
"If they used 20 for lunch and bought 6 more, how many apples do they have?"
|
| 92 |
-
),
|
| 93 |
-
)
|
| 94 |
-
button = gr.Button(f"Generate with {MODEL_NAME}")
|
| 95 |
with gr.Column():
|
| 96 |
highlighted_text = gr.HighlightedText(
|
| 97 |
label="Highlighted generation",
|
|
@@ -101,6 +83,6 @@ if __name__ == "__main__":
|
|
| 101 |
|
| 102 |
button.click(get_tokens_and_labels, inputs=prompt, outputs=highlighted_text)
|
| 103 |
|
| 104 |
-
|
| 105 |
if __name__ == "__main__":
|
| 106 |
demo.launch()
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
+
from transformers import GPT2Tokenizer, AutoModelForCausalLM
|
| 4 |
import numpy as np
|
| 5 |
|
|
|
|
| 6 |
MODEL_NAME = "gpt2"
|
| 7 |
|
|
|
|
| 8 |
if __name__ == "__main__":
|
| 9 |
# Define your model and your tokenizer
|
| 10 |
+
tokenizer = GPT2Tokenizer.from_pretrained(MODEL_NAME)
|
| 11 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
| 12 |
if tokenizer.pad_token_id is None:
|
| 13 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 14 |
model.config.pad_token_id = model.config.eos_token_id
|
|
|
|
| 26 |
"p < 1%": "red"
|
| 27 |
}
|
| 28 |
|
| 29 |
+
|
| 30 |
def get_tokens_and_labels(prompt):
|
| 31 |
"""
|
| 32 |
Given the prompt (text), return a list of tuples (decoded_token, label)
|
| 33 |
"""
|
| 34 |
inputs = tokenizer([prompt], return_tensors="pt")
|
| 35 |
outputs = model.generate(
|
| 36 |
+
**inputs, max_new_tokens=50, return_dict_in_generate=True, output_scores=True, do_sample=True
|
| 37 |
)
|
| 38 |
# Important: don't forget to set `normalize_logits=True` to obtain normalized probabilities (i.e. sum(p) = 1)
|
| 39 |
transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, normalize_logits=True)
|
| 40 |
transition_proba = np.exp(transition_scores)
|
| 41 |
# We only have scores for the generated tokens, so pop out the prompt tokens
|
| 42 |
input_length = 1 if model.config.is_encoder_decoder else inputs.input_ids.shape[1]
|
| 43 |
+
generated_tokens = outputs.sequences[:, input_length:]
|
|
|
|
| 44 |
|
| 45 |
+
# Initialize the highlighted output with the prompt, which will have no color label
|
| 46 |
+
highlighted_out = [(tokenizer.decode(token), None) for token in inputs.input_ids]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
# Get the (decoded_token, label) pairs for the generated tokens
|
| 48 |
+
for token, proba in zip(generated_tokens[0], transition_proba[0]):
|
| 49 |
this_label = None
|
| 50 |
assert 0. <= proba <= 1.0
|
| 51 |
for min_proba, label in probs_to_label:
|
| 52 |
if proba >= min_proba:
|
| 53 |
this_label = label
|
| 54 |
break
|
| 55 |
+
highlighted_out.append((tokenizer.decode(token), this_label))
|
| 56 |
|
| 57 |
return highlighted_out
|
| 58 |
|
| 59 |
+
|
| 60 |
demo = gr.Blocks()
|
| 61 |
with demo:
|
| 62 |
gr.Markdown(
|
| 63 |
"""
|
| 64 |
+
# π Color Coded Text Generation π
|
|
|
|
| 65 |
This is a demo of how you can obtain the probabilities of each generated token, and use them to
|
| 66 |
+
color code the model output.
|
| 67 |
+
Feel free to clone this demo and modify it to your needs π€
|
| 68 |
+
Internally, it relies on [`compute_transition_scores`](https://huggingface.co/docs/transformers/main/en/main_classes/text_generation#transformers.GenerationMixin.compute_transition_scores),
|
| 69 |
which was added in `transformers` v4.26.0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
"""
|
| 71 |
)
|
| 72 |
|
| 73 |
with gr.Row():
|
| 74 |
with gr.Column():
|
| 75 |
+
prompt = gr.Textbox(label="Prompt", lines=3, value="Today is")
|
| 76 |
+
button = gr.Button(f"Generate with {MODEL_NAME}, using sampling!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
with gr.Column():
|
| 78 |
highlighted_text = gr.HighlightedText(
|
| 79 |
label="Highlighted generation",
|
|
|
|
| 83 |
|
| 84 |
button.click(get_tokens_and_labels, inputs=prompt, outputs=highlighted_text)
|
| 85 |
|
|
|
|
| 86 |
if __name__ == "__main__":
|
| 87 |
demo.launch()
|
| 88 |
+
|