Spaces:
Runtime error
Runtime error
| import math | |
| from typing import Optional | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn | |
| class AttentionBlock(nn.Module): | |
| """ | |
| An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted | |
| to the N-d case. | |
| https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. | |
| Uses three q, k, v linear layers to compute attention. | |
| Parameters: | |
| channels (:obj:`int`): The number of channels in the input and output. | |
| num_head_channels (:obj:`int`, *optional*): | |
| The number of channels in each head. If None, then `num_heads` = 1. | |
| num_groups (:obj:`int`, *optional*, defaults to 32): The number of groups to use for group norm. | |
| rescale_output_factor (:obj:`float`, *optional*, defaults to 1.0): The factor to rescale the output by. | |
| eps (:obj:`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm. | |
| """ | |
| def __init__( | |
| self, | |
| channels: int, | |
| num_head_channels: Optional[int] = None, | |
| num_groups: int = 32, | |
| rescale_output_factor = 1.0, | |
| eps = 1e-5, | |
| ): | |
| super().__init__() | |
| self.channels = channels | |
| self.num_heads = channels // num_head_channels if num_head_channels is not None else 1 | |
| self.num_head_size = num_head_channels | |
| self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=eps, affine=True) | |
| # define q,k,v as linear layers | |
| self.query = nn.Linear(channels, channels) | |
| self.key = nn.Linear(channels, channels) | |
| self.value = nn.Linear(channels, channels) | |
| self.rescale_output_factor = rescale_output_factor | |
| self.proj_attn = nn.Linear(channels, channels, 1) | |
| def transpose_for_scores(self, projection: torch.Tensor) -> torch.Tensor: | |
| new_projection_shape = projection.size()[:-1] + (self.num_heads, -1) | |
| # move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D) | |
| new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3) | |
| return new_projection | |
| def forward(self, hidden_states): | |
| residual = hidden_states | |
| batch, channel, height, width = hidden_states.shape | |
| # norm | |
| hidden_states = self.group_norm(hidden_states) | |
| hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2) | |
| # proj to q, k, v | |
| query_proj = self.query(hidden_states) | |
| key_proj = self.key(hidden_states) | |
| value_proj = self.value(hidden_states) | |
| # transpose | |
| query_states = self.transpose_for_scores(query_proj) | |
| key_states = self.transpose_for_scores(key_proj) | |
| value_states = self.transpose_for_scores(value_proj) | |
| # get scores | |
| scale = 1 / math.sqrt(math.sqrt(self.channels / self.num_heads)) | |
| attention_scores = torch.matmul(query_states * scale, key_states.transpose(-1, -2) * scale) | |
| attention_probs = torch.softmax(attention_scores, dim=-1).type(attention_scores.dtype) | |
| # compute attention output | |
| hidden_states = torch.matmul(attention_probs, value_states) | |
| hidden_states = hidden_states.permute(0, 2, 1, 3).contiguous() | |
| new_hidden_states_shape = hidden_states.size()[:-2] + (self.channels,) | |
| hidden_states = hidden_states.view(new_hidden_states_shape) | |
| # compute next hidden_states | |
| hidden_states = self.proj_attn(hidden_states) | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width) | |
| # res connect and rescale | |
| hidden_states = (hidden_states + residual) / self.rescale_output_factor | |
| return hidden_states | |
| class SpatialTransformer(nn.Module): | |
| """ | |
| Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply | |
| standard transformer action. Finally, reshape to image. | |
| Parameters: | |
| in_channels (:obj:`int`): The number of channels in the input and output. | |
| n_heads (:obj:`int`): The number of heads to use for multi-head attention. | |
| d_head (:obj:`int`): The number of channels in each head. | |
| depth (:obj:`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. | |
| dropout (:obj:`float`, *optional*, defaults to 0.1): The dropout probability to use. | |
| context_dim (:obj:`int`, *optional*): The number of context dimensions to use. | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| n_heads: int, | |
| d_head: int, | |
| depth: int = 1, | |
| dropout = 0.0, | |
| context_dim: Optional[int] = None, | |
| ): | |
| super().__init__() | |
| self.n_heads = n_heads | |
| self.d_head = d_head | |
| self.in_channels = in_channels | |
| inner_dim = n_heads * d_head | |
| self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) | |
| self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim) | |
| for d in range(depth) | |
| ] | |
| ) | |
| self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) | |
| def _set_attention_slice(self, slice_size): | |
| for block in self.transformer_blocks: | |
| block._set_attention_slice(slice_size) | |
| def forward(self, x, context=None): | |
| # note: if no context is given, cross-attention defaults to self-attention | |
| b, c, h, w = x.shape | |
| x_in = x | |
| x = self.norm(x) | |
| x = self.proj_in(x) | |
| x = x.permute(0, 2, 3, 1).reshape(b, h * w, c) | |
| for block in self.transformer_blocks: | |
| x = block(x, context=context) | |
| x = x.reshape(b, h, w, c).permute(0, 3, 1, 2) | |
| x = self.proj_out(x) | |
| return x + x_in | |
| class BasicTransformerBlock(nn.Module): | |
| r""" | |
| A basic Transformer block. | |
| Parameters: | |
| dim (:obj:`int`): The number of channels in the input and output. | |
| n_heads (:obj:`int`): The number of heads to use for multi-head attention. | |
| d_head (:obj:`int`): The number of channels in each head. | |
| dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
| context_dim (:obj:`int`, *optional*): The size of the context vector for cross attention. | |
| gated_ff (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use a gated feed-forward network. | |
| checkpoint (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use checkpointing. | |
| """ | |
| def __init__( | |
| self, | |
| dim: int, | |
| n_heads: int, | |
| d_head: int, | |
| dropout=0.0, | |
| context_dim: Optional[int] = None, | |
| gated_ff: bool = True, | |
| checkpoint: bool = True, | |
| ): | |
| super().__init__() | |
| self.attn1 = CrossAttention( | |
| query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout | |
| ) # is a self-attention | |
| self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) | |
| self.attn2 = CrossAttention( | |
| query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout | |
| ) # is self-attn if context is none | |
| self.norm1 = nn.LayerNorm(dim) | |
| self.norm2 = nn.LayerNorm(dim) | |
| self.norm3 = nn.LayerNorm(dim) | |
| self.checkpoint = checkpoint | |
| def _set_attention_slice(self, slice_size): | |
| self.attn1._slice_size = slice_size | |
| self.attn2._slice_size = slice_size | |
| def forward(self, x, context=None): | |
| x = x.contiguous() if x.device.type == "mps" else x | |
| x = self.attn1(self.norm1(x)) + x | |
| x = self.attn2(self.norm2(x), context=context) + x | |
| x = self.ff(self.norm3(x)) + x | |
| return x | |
| class CrossAttention(nn.Module): | |
| r""" | |
| A cross attention layer. | |
| Parameters: | |
| query_dim (:obj:`int`): The number of channels in the query. | |
| context_dim (:obj:`int`, *optional*): | |
| The number of channels in the context. If not given, defaults to `query_dim`. | |
| heads (:obj:`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. | |
| dim_head (:obj:`int`, *optional*, defaults to 64): The number of channels in each head. | |
| dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
| """ | |
| def __init__( | |
| self, query_dim: int, context_dim: Optional[int] = None, heads: int = 8, dim_head: int = 64, dropout: int = 0.0 | |
| ): | |
| super().__init__() | |
| inner_dim = dim_head * heads | |
| context_dim = context_dim if context_dim is not None else query_dim | |
| self.scale = dim_head**-0.5 | |
| self.heads = heads | |
| # for slice_size > 0 the attention score computation | |
| # is split across the batch axis to save memory | |
| # You can set slice_size with `set_attention_slice` | |
| self._slice_size = None | |
| self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | |
| self.to_k = nn.Linear(context_dim, inner_dim, bias=False) | |
| self.to_v = nn.Linear(context_dim, inner_dim, bias=False) | |
| self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)) | |
| def reshape_heads_to_batch_dim(self, tensor): | |
| batch_size, seq_len, dim = tensor.shape | |
| head_size = self.heads | |
| tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) | |
| tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) | |
| return tensor | |
| def reshape_batch_dim_to_heads(self, tensor): | |
| batch_size, seq_len, dim = tensor.shape | |
| head_size = self.heads | |
| tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) | |
| tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) | |
| return tensor | |
| def forward(self, x, context=None, mask=None): | |
| batch_size, sequence_length, dim = x.shape | |
| q = self.to_q(x) | |
| context = context if context is not None else x | |
| k = self.to_k(context) | |
| v = self.to_v(context) | |
| q = self.reshape_heads_to_batch_dim(q) | |
| k = self.reshape_heads_to_batch_dim(k) | |
| v = self.reshape_heads_to_batch_dim(v) | |
| # TODO(PVP) - mask is currently never used. Remember to re-implement when used | |
| # attention, what we cannot get enough of | |
| hidden_states = self._attention(q, k, v, sequence_length, dim) | |
| return self.to_out(hidden_states) | |
| def _attention(self, query, key, value, sequence_length, dim): | |
| batch_size_attention = query.shape[0] | |
| hidden_states = torch.zeros( | |
| (batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype | |
| ) | |
| slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0] | |
| for i in range(hidden_states.shape[0] // slice_size): | |
| start_idx = i * slice_size | |
| end_idx = (i + 1) * slice_size | |
| attn_slice = ( | |
| torch.einsum("b i d, b j d -> b i j", query[start_idx:end_idx], key[start_idx:end_idx]) * self.scale | |
| ) | |
| attn_slice = attn_slice.softmax(dim=-1) | |
| attn_slice = torch.einsum("b i j, b j d -> b i d", attn_slice, value[start_idx:end_idx]) | |
| hidden_states[start_idx:end_idx] = attn_slice | |
| # reshape hidden_states | |
| hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
| return hidden_states | |
| class FeedForward(nn.Module): | |
| r""" | |
| A feed-forward layer. | |
| Parameters: | |
| dim (:obj:`int`): The number of channels in the input. | |
| dim_out (:obj:`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. | |
| mult (:obj:`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. | |
| glu (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use GLU activation. | |
| dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
| """ | |
| def __init__( | |
| self, dim: int, dim_out: Optional[int] = None, mult: int = 4, glu: bool = False, dropout = 0.0 | |
| ): | |
| super().__init__() | |
| inner_dim = int(dim * mult) | |
| dim_out = dim_out if dim_out is not None else dim | |
| project_in = GEGLU(dim, inner_dim) | |
| self.net = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)) | |
| def forward(self, x): | |
| return self.net(x) | |
| # feedforward | |
| class GEGLU(nn.Module): | |
| r""" | |
| A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202. | |
| Parameters: | |
| dim_in (:obj:`int`): The number of channels in the input. | |
| dim_out (:obj:`int`): The number of channels in the output. | |
| """ | |
| def __init__(self, dim_in: int, dim_out: int): | |
| super().__init__() | |
| self.proj = nn.Linear(dim_in, dim_out * 2) | |
| def forward(self, x): | |
| x, gate = self.proj(x).chunk(2, dim=-1) | |
| return x * F.gelu(gate) | |