Spaces:
Sleeping
Sleeping
| import os | |
| import gradio as gr | |
| from langchain.document_loaders import PDFMinerLoader,CSVLoader ,UnstructuredWordDocumentLoader,TextLoader | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain.embeddings import SentenceTransformerEmbeddings | |
| from langchain.vectorstores import FAISS | |
| from langchain import HuggingFaceHub | |
| from langchain.chains import RetrievalQA | |
| from langchain.prompts import PromptTemplate | |
| DEVICE = 'cpu' | |
| FILE_EXT = ['pdf','text','csv','word','wav'] | |
| def loading_file(): | |
| return "Loading..." | |
| def get_openai_chat_model(API_key): | |
| try: | |
| from langchain.llms import OpenAI | |
| except ImportError as err: | |
| raise "{}, unable to load openAI. Please install openai and add OPENAIAPI_KEY" | |
| os.environ["OPENAI_API_KEY"] = API_key | |
| llm = OpenAI() | |
| return llm | |
| def process_documents(documents,data_chunk=1000,chunk_overlap=50): | |
| text_splitter = RecursiveCharacterTextSplitter(chunk_size=data_chunk, chunk_overlap=chunk_overlap) | |
| texts = text_splitter.split_documents(documents[0]) | |
| return texts | |
| def get_hugging_face_model(model_id,API_key,temperature=0.1): | |
| chat_llm = HuggingFaceHub(huggingfacehub_api_token=API_key, | |
| repo_id=model_id, | |
| model_kwargs={"temperature": temperature, "max_new_tokens": 2048}) | |
| return chat_llm | |
| def chat_application(llm_service,key): | |
| if llm_model == 'HuggingFace': | |
| llm = get_hugging_face_model(model_id='tiiuae/falcon-7b-instruct',API_key=key) | |
| else: | |
| llm_model = get_openai_chat_model(API_key=key) | |
| def document_loader(file_data,api_key,doc_type='pdf',llm='Huggingface'): | |
| embedding_model = SentenceTransformerEmbeddings(model_name='all-mpnet-base-v2',model_kwargs={"device": DEVICE}) | |
| document = None | |
| if doc_type == 'pdf': | |
| document = process_pdf_document(document_file_name=file_data) | |
| elif doc_type == 'text': | |
| document = process_text_document(document_file_name=file_data) | |
| elif doc_type == 'csv': | |
| document = process_csv_document(document_file_name=file_data) | |
| elif doc_type == 'word': | |
| document = process_word_document(document_file_name=file_data) | |
| print(document) | |
| if document: | |
| texts = process_documents(documents=document) | |
| vector_db = FAISS.from_documents(documents=texts, embedding= embedding_model) | |
| global qa | |
| qa = RetrievalQA.from_chain_type(llm=chat_application(llm_service=llm,key=api_key), | |
| chain_type='stuff', | |
| retriever=vector_db.as_retriever(), | |
| # chain_type_kwargs=chain_type_kwargs, | |
| return_source_documents=True | |
| ) | |
| else: | |
| return "Error in loading Documents " | |
| return "Ready..." | |
| def process_text_document(document_file_name): | |
| loader = TextLoader(document_file_name) | |
| document = loader.load() | |
| return document | |
| def process_csv_document(document_file_name): | |
| loader = CSVLoader(file_path=document_file_name) | |
| document = loader.load() | |
| return document | |
| def process_word_document(document_file_name): | |
| loader = UnstructuredWordDocumentLoader(file_path=document_file_name) | |
| document = loader.load() | |
| return document | |
| def process_pdf_document(document_file_name): | |
| loader = PDFMinerLoader(document_file_name) | |
| document = loader.load()[0] | |
| return document | |
| css=""" | |
| #col-container {max-width: 700px; margin-left: auto; margin-right: auto;} | |
| """ | |
| title = """ | |
| <div style="text-align: center;max-width: 700px;"> | |
| <h1>Chat with Data • OpenAI/HuggingFace</h1> | |
| <p style="text-align: center;">Upload a file from your computer, click the "Load data to LangChain" button, <br /> | |
| when everything is ready, you can start asking questions about the data you uploaded ;) <br /> | |
| This version is just for QA retrival so it will not use chat history, and uses Hugging face as LLM, | |
| so you don't need any key</p> | |
| </div> | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.HTML(title) | |
| with gr.Column(): | |
| with gr.Box(): | |
| LLM_option = gr.Dropdown(['HuggingFace','OpenAI'],label='Large Language Model Selection',info='LLM Service') | |
| API_key = gr.Textbox(label="Add API key".format(LLM_option), type="password") | |
| with gr.Column(): | |
| with gr.Row(): | |
| file_extension = gr.Dropdown(FILE_EXT, label="File Extensions", info="Select your files extensions!") | |
| pdf_doc = gr.File(label="Upload File to start QA", file_types=FILE_EXT, type="file") | |
| with gr.Row(): | |
| load_pdf = gr.Button("Load file to langchain") | |
| langchain_status = gr.Textbox(label="Status", placeholder="", interactive=True) | |
| chatbot = gr.Chatbot() | |
| question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter") | |
| submit_button = gr.Button("Send Message") | |
| load_pdf.click(loading_file, None, langchain_status, queue=False) | |
| load_pdf.click(document_loader, inputs=[pdf_doc,API_key,file_extension,LLM_option], outputs=[langchain_status], queue=False) | |
| # question.submit(add_text, [chatbot, question], [chatbot, question]).then( | |
| # bot, chatbot, chatbot | |
| # ) | |
| demo.launch() |