Spaces:
Sleeping
Sleeping
Commit
·
e9840df
1
Parent(s):
278cbaa
adding my LLM-chatbot model
Browse files- app.py +105 -0
- requirements.txt +8 -0
app.py
ADDED
|
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch as th
|
| 3 |
+
|
| 4 |
+
from langchain.document_loaders import PDFMinerLoader,CSVLoader ,UnstructuredWordDocumentLoader,TextLoader
|
| 5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 6 |
+
from langchain.embeddings import SentenceTransformerEmbeddings
|
| 7 |
+
from langchain.vectorstores import Chroma, FAISS
|
| 8 |
+
from langchain import HuggingFaceHub
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
DEVICE = 'cpu '
|
| 12 |
+
FILE_EXT = ['pdf','text','csv','word','wav']
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def loading_pdf():
|
| 16 |
+
return "Loading..."
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def process_documents(documents,data_chunk=1000,chunk_overlap=50):
|
| 20 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=data_chunk, chunk_overlap=chunk_overlap)
|
| 21 |
+
texts = text_splitter.split_documents(documents[0])
|
| 22 |
+
return texts
|
| 23 |
+
|
| 24 |
+
def get_hugging_face_model(model_id,API_key,temperature=0.1):
|
| 25 |
+
chat_llm = HuggingFaceHub(huggingfacehub_api_token=API_key,
|
| 26 |
+
repo_id=model_id,
|
| 27 |
+
model_kwargs={"temperature": temperature, "max_new_tokens": 2048})
|
| 28 |
+
return chat_llm
|
| 29 |
+
|
| 30 |
+
def document_loading(file_data,doc_type='pdf',key=None):
|
| 31 |
+
|
| 32 |
+
embedding_model = SentenceTransformerEmbeddings(model_name='all-mpnet-base-v2',model_kwargs={"device": DEVICE})
|
| 33 |
+
|
| 34 |
+
document = None
|
| 35 |
+
if doc_type == 'pdf':
|
| 36 |
+
document = process_pdf_document(document_file_name=file_data)
|
| 37 |
+
elif doc_type == 'text':
|
| 38 |
+
document = process_text_document(document_file_name=file_data)
|
| 39 |
+
elif doc_type == 'csv':
|
| 40 |
+
document = process_csv_document(document_file_name=file_data)
|
| 41 |
+
elif doc_type == 'word':
|
| 42 |
+
document = process_word_document(document_file_name=file_data)
|
| 43 |
+
|
| 44 |
+
texts = process_documents(documents=document)
|
| 45 |
+
vectordb = FAISS.from_documents(documents=texts, embedding= embedding_model)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def process_text_document(document_file_name):
|
| 49 |
+
loader = TextLoader(document_file_name)
|
| 50 |
+
document = loader.load()
|
| 51 |
+
return document
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def process_csv_document(document_file_name):
|
| 55 |
+
loader = CSVLoader(file_path=document_file_name)
|
| 56 |
+
document = loader.load()
|
| 57 |
+
return document
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def process_word_document(document_file_name):
|
| 61 |
+
loader = UnstructuredWordDocumentLoader(file_path=document_file_name)
|
| 62 |
+
document = loader.load()
|
| 63 |
+
return document
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def process_pdf_document(document_file_name):
|
| 67 |
+
loader = PDFMinerLoader(document_file_name)
|
| 68 |
+
document = loader.load()[0]
|
| 69 |
+
return document
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
css="""
|
| 76 |
+
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
|
| 77 |
+
"""
|
| 78 |
+
|
| 79 |
+
title = """
|
| 80 |
+
<div style="text-align: center;max-width: 700px;">
|
| 81 |
+
<h1>Chat with Data • OpenAI/HuggingFace</h1>
|
| 82 |
+
<p style="text-align: center;">Upload a file from your computer, click the "Load data to LangChain" button, <br />
|
| 83 |
+
when everything is ready, you can start asking questions about the data you uploaded ;) <br />
|
| 84 |
+
This version is just for QA retrival so it will not use chat history, and uses Hugging face as LLM,
|
| 85 |
+
so you don't need any key</p>
|
| 86 |
+
</div>
|
| 87 |
+
"""
|
| 88 |
+
|
| 89 |
+
with gr.Blocks(css=css) as demo:
|
| 90 |
+
with gr.Column(elem_id="col-container"):
|
| 91 |
+
gr.HTML(title)
|
| 92 |
+
|
| 93 |
+
with gr.Column():
|
| 94 |
+
with gr.Box():
|
| 95 |
+
LLM_option = gr.Dropdown(['HuggingFace','OpenAI'],label='LLM',info='select the LLM to be used')
|
| 96 |
+
API_key = gr.Textbox(label="You OpenAI/Huggingface API key", type="password")
|
| 97 |
+
with gr.Column():
|
| 98 |
+
file_extension = gr.Dropdown(FILE_EXT, label="File Extensions", info="Select your files extensions!")
|
| 99 |
+
pdf_doc = gr.File(label="Load a File", file_types=FILE_EXT, type="file")
|
| 100 |
+
with gr.Row():
|
| 101 |
+
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
|
| 102 |
+
load_pdf = gr.Button("Load file to langchain")
|
| 103 |
+
|
| 104 |
+
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
|
| 105 |
+
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
openai
|
| 2 |
+
tiktoken
|
| 3 |
+
chromadb
|
| 4 |
+
langchain
|
| 5 |
+
unstructured
|
| 6 |
+
unstructured[local-inference]
|
| 7 |
+
transformers
|
| 8 |
+
|