Spaces:
Sleeping
Sleeping
| # app.py | |
| import gradio as gr | |
| from transformers import T5Tokenizer, T5ForConditionalGeneration | |
| from deep_translator import GoogleTranslator | |
| import torch | |
| torch.set_num_threads(1) | |
| torch.set_num_interop_threads(1) | |
| model_name = "mrm8488/t5-base-finetuned-wikiSQL" | |
| tokenizer = T5Tokenizer.from_pretrained(model_name) | |
| model = T5ForConditionalGeneration.from_pretrained(model_name) | |
| # Tu esquema personalizado | |
| SCHEMA = """ | |
| Schema: | |
| Table bodegas with columns: Id, Nombre, Encargado, Telefono, Email, Direccion, Horario, Regional, Latitud, Longitud. | |
| Table maestra with columns: CodigoSap, Descripcion, Grupo, Agrupador, Marca, Parte, Operacion, Componente. | |
| """ | |
| def generar_sql(pregunta_espanol): | |
| try: | |
| pregunta_ingles = GoogleTranslator(source="es", target="en").translate(pregunta_espanol) | |
| prompt = f"{SCHEMA}\ntranslate English to SQL: {pregunta_ingles}" | |
| input_ids = tokenizer(prompt, return_tensors="pt").input_ids | |
| output = model.generate(input_ids, max_length=128) | |
| sql = tokenizer.decode(output[0], skip_special_tokens=True) | |
| return sql | |
| except Exception as e: | |
| return f"Error: {str(e)}" | |
| iface = gr.Interface( | |
| fn=generar_sql, | |
| inputs=gr.Textbox(lines=3, label="Pregunta en español"), | |
| outputs=gr.Textbox(label="Consulta SQL generada"), | |
| title="Texto a SQL con esquema personalizado", | |
| description="Escribe una pregunta en español y genera SQL sobre las tablas `bodegas` y `maestra`." | |
| ) | |
| iface.launch() | |