Spaces:
Running
Running
| import streamlit as st | |
| from transformers import ViTImageProcessor, AutoModelForImageClassification | |
| from PIL import Image | |
| import requests | |
| from io import BytesIO | |
| # Load the model and processor | |
| processor = ViTImageProcessor.from_pretrained('AdamCodd/vit-base-nsfw-detector') | |
| model = AutoModelForImageClassification.from_pretrained('AdamCodd/vit-base-nsfw-detector') | |
| # Define prediction function | |
| def predict_image(image): | |
| try: | |
| # Process the image and make prediction | |
| inputs = processor(images=image, return_tensors="pt") | |
| outputs = model(**inputs) | |
| logits = outputs.logits | |
| # Get predicted class | |
| predicted_class_idx = logits.argmax(-1).item() | |
| predicted_label = model.config.id2label[predicted_class_idx] | |
| return predicted_label | |
| except Exception as e: | |
| return str(e) | |
| # Streamlit app | |
| st.title("NSFW Image Classifier") | |
| # Upload image file | |
| uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) | |
| if uploaded_file is not None: | |
| image = Image.open(uploaded_file) | |
| st.image(image, caption='Uploaded Image.', use_column_width=True) | |
| st.write("") | |
| st.write("Classifying...") | |
| # Predict and display result | |
| prediction = predict_image(image) | |
| st.write(f"Predicted Class: {prediction}") |