Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,16 +10,34 @@ import gradio as gr
|
|
| 10 |
# Load environment variables
|
| 11 |
load_dotenv()
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
#
|
| 18 |
-
#
|
| 19 |
-
|
| 20 |
-
#
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
parser = LlamaParse(api_key=os.getenv("LLAMA_INDEX_API"), result_type='markdown')
|
| 24 |
file_extractor = {'.pdf': parser, '.docx': parser, '.doc': parser}
|
| 25 |
|
|
@@ -29,32 +47,51 @@ embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
|
| 29 |
# Global variable to store documents loaded from user-uploaded files
|
| 30 |
vector_index = None
|
| 31 |
|
|
|
|
| 32 |
# File processing function
|
| 33 |
def load_files(file_path: str):
|
| 34 |
try:
|
| 35 |
global vector_index
|
| 36 |
document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data()
|
| 37 |
vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model)
|
| 38 |
-
print(f"
|
| 39 |
filename = os.path.basename(file_path)
|
| 40 |
-
return f"Ready to give response on
|
| 41 |
except Exception as e:
|
| 42 |
-
return f"An error occurred {e}"
|
|
|
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
def respond(message, history):
|
| 45 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
query_engine = vector_index.as_query_engine(llm=llm)
|
| 47 |
bot_message = query_engine.query(message)
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
# yield output
|
| 52 |
-
print(f"\n{datetime.now()}:: {message} --> {str(bot_message)}\n")
|
| 53 |
-
return str(bot_message)
|
| 54 |
except Exception as e:
|
| 55 |
-
if e == "'NoneType' object has no attribute 'as_query_engine'":
|
| 56 |
-
return "upload file"
|
| 57 |
-
return f"
|
|
|
|
| 58 |
|
| 59 |
# UI Setup
|
| 60 |
with gr.Blocks() as demo:
|
|
@@ -65,18 +102,20 @@ with gr.Blocks() as demo:
|
|
| 65 |
clear = gr.ClearButton()
|
| 66 |
btn = gr.Button("Submit", variant='primary')
|
| 67 |
output = gr.Text(label='Vector Index')
|
|
|
|
|
|
|
| 68 |
with gr.Column(scale=3):
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
|
| 75 |
-
#
|
|
|
|
| 76 |
btn.click(fn=load_files, inputs=file_input, outputs=output)
|
| 77 |
-
clear.click(lambda: [None]*2, outputs=[file_input, output])
|
| 78 |
-
|
| 79 |
|
| 80 |
-
# Launch the demo with public link option
|
| 81 |
if __name__ == "__main__":
|
| 82 |
demo.launch()
|
|
|
|
| 10 |
# Load environment variables
|
| 11 |
load_dotenv()
|
| 12 |
|
| 13 |
+
models = [
|
| 14 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 15 |
+
"meta-llama/Meta-Llama-3-8B-Instruct",
|
| 16 |
+
# "NousResearch/Yarn-Mistral-7b-64k", ## 14GB>10GB
|
| 17 |
+
# "impira/layoutlm-document-qa", ## ERR
|
| 18 |
+
# "Qwen/Qwen1.5-7B", ## 15GB
|
| 19 |
+
# "Qwen/Qwen2.5-3B", ## high response time
|
| 20 |
+
# "google/gemma-2-2b-jpn-it", ## high response time
|
| 21 |
+
# "impira/layoutlm-invoices", ## bad req
|
| 22 |
+
# "google/pix2struct-docvqa-large", ## bad req
|
| 23 |
+
"mistralai/Mistral-7B-Instruct-v0.2",
|
| 24 |
+
# "google/gemma-7b-it", ## 17GB > 10GB
|
| 25 |
+
# "google/gemma-2b-it", ## high response time
|
| 26 |
+
# "HuggingFaceH4/zephyr-7b-beta", ## high response time
|
| 27 |
+
# "HuggingFaceH4/zephyr-7b-gemma-v0.1", ## bad req
|
| 28 |
+
# "microsoft/phi-2", ## high response time
|
| 29 |
+
# "TinyLlama/TinyLlama-1.1B-Chat-v1.0", ## high response time
|
| 30 |
+
# "mosaicml/mpt-7b-instruct", ## 13GB>10GB
|
| 31 |
+
"tiiuae/falcon-7b-instruct",
|
| 32 |
+
"google/flan-t5-xxl"
|
| 33 |
+
# "NousResearch/Yarn-Mistral-7b-128k", ## 14GB>10GB
|
| 34 |
+
# "Qwen/Qwen2.5-7B-Instruct", ## 15GB>10GB
|
| 35 |
+
]
|
| 36 |
|
| 37 |
+
# Global variable for selected model
|
| 38 |
+
selected_model_name = models[0] # Default to the first model in the list
|
| 39 |
+
|
| 40 |
+
# Initialize the parser
|
| 41 |
parser = LlamaParse(api_key=os.getenv("LLAMA_INDEX_API"), result_type='markdown')
|
| 42 |
file_extractor = {'.pdf': parser, '.docx': parser, '.doc': parser}
|
| 43 |
|
|
|
|
| 47 |
# Global variable to store documents loaded from user-uploaded files
|
| 48 |
vector_index = None
|
| 49 |
|
| 50 |
+
|
| 51 |
# File processing function
|
| 52 |
def load_files(file_path: str):
|
| 53 |
try:
|
| 54 |
global vector_index
|
| 55 |
document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data()
|
| 56 |
vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model)
|
| 57 |
+
print(f"Parsing done for {file_path}")
|
| 58 |
filename = os.path.basename(file_path)
|
| 59 |
+
return f"Ready to give response on {filename}"
|
| 60 |
except Exception as e:
|
| 61 |
+
return f"An error occurred: {e}"
|
| 62 |
+
|
| 63 |
|
| 64 |
+
# Function to handle the selected model from dropdown
|
| 65 |
+
def set_model(selected_model):
|
| 66 |
+
global selected_model_name
|
| 67 |
+
selected_model_name = selected_model # Update the global variable
|
| 68 |
+
# print(f"Model selected: {selected_model_name}")
|
| 69 |
+
# return f"Model set to: {selected_model_name}"
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
# Respond function that uses the globally set selected model
|
| 73 |
def respond(message, history):
|
| 74 |
try:
|
| 75 |
+
# Initialize the LLM with the selected model
|
| 76 |
+
llm = HuggingFaceInferenceAPI(
|
| 77 |
+
model_name=selected_model_name,
|
| 78 |
+
token=os.getenv("TOKEN")
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
# Check selected model
|
| 82 |
+
# print(f"Using model: {selected_model_name}")
|
| 83 |
+
|
| 84 |
+
# Set up the query engine with the selected LLM
|
| 85 |
query_engine = vector_index.as_query_engine(llm=llm)
|
| 86 |
bot_message = query_engine.query(message)
|
| 87 |
+
|
| 88 |
+
print(f"\n{datetime.now()}:{selected_model_name}:: {message} --> {str(bot_message)}\n")
|
| 89 |
+
return f"{selected_model_name}:\n{str(bot_message)}"
|
|
|
|
|
|
|
|
|
|
| 90 |
except Exception as e:
|
| 91 |
+
if str(e) == "'NoneType' object has no attribute 'as_query_engine'":
|
| 92 |
+
return "Please upload a file."
|
| 93 |
+
return f"An error occurred: {e}"
|
| 94 |
+
|
| 95 |
|
| 96 |
# UI Setup
|
| 97 |
with gr.Blocks() as demo:
|
|
|
|
| 102 |
clear = gr.ClearButton()
|
| 103 |
btn = gr.Button("Submit", variant='primary')
|
| 104 |
output = gr.Text(label='Vector Index')
|
| 105 |
+
model_dropdown = gr.Dropdown(models, label="Select Model", interactive=True)
|
| 106 |
+
|
| 107 |
with gr.Column(scale=3):
|
| 108 |
+
gr.ChatInterface(
|
| 109 |
+
fn=respond,
|
| 110 |
+
chatbot=gr.Chatbot(height=500),
|
| 111 |
+
textbox=gr.Textbox(placeholder="Ask me questions on the uploaded document!", container=False, scale=7)
|
| 112 |
+
)
|
| 113 |
|
| 114 |
+
# Set up Gradio interactions
|
| 115 |
+
model_dropdown.change(fn=set_model, inputs=model_dropdown)
|
| 116 |
btn.click(fn=load_files, inputs=file_input, outputs=output)
|
| 117 |
+
clear.click(lambda: [None] * 2, outputs=[file_input, output])
|
|
|
|
| 118 |
|
| 119 |
+
# Launch the demo with a public link option
|
| 120 |
if __name__ == "__main__":
|
| 121 |
demo.launch()
|