Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,7 +6,7 @@ from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
|
|
| 6 |
import os
|
| 7 |
from dotenv import load_dotenv
|
| 8 |
import gradio as gr
|
| 9 |
-
import
|
| 10 |
import base64
|
| 11 |
|
| 12 |
# Load environment variables
|
|
@@ -17,78 +17,38 @@ llm_models = [
|
|
| 17 |
"meta-llama/Meta-Llama-3-8B-Instruct",
|
| 18 |
"mistralai/Mistral-7B-Instruct-v0.2",
|
| 19 |
"tiiuae/falcon-7b-instruct",
|
| 20 |
-
# "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
|
| 21 |
-
# "deepseek-ai/deepseek-vl2", ## 54GB > 10GB
|
| 22 |
-
# "deepseek-ai/deepseek-vl2-small", ## 32GB > 10GB
|
| 23 |
-
# "deepseek-ai/deepseek-vl2-tiny", ## high response time
|
| 24 |
-
# "deepseek-ai/deepseek-llm-7b-chat", ## 13GB > 10GB
|
| 25 |
-
# "deepseek-ai/deepseek-math-7b-instruct", ## 13GB > 10GB
|
| 26 |
-
# "deepseek-ai/deepseek-coder-33b-instruct", ## 66GB > 10GB
|
| 27 |
-
# "deepseek-ai/DeepSeek-R1-Zero", ## 688GB > 10GB
|
| 28 |
-
# "mistralai/Mixtral-8x22B-Instruct-v0.1", ## 281GB>10GB
|
| 29 |
-
# "NousResearch/Yarn-Mistral-7b-64k", ## 14GB>10GB
|
| 30 |
-
# "impira/layoutlm-document-qa", ## ERR
|
| 31 |
-
# "Qwen/Qwen1.5-7B", ## 15GB
|
| 32 |
-
# "Qwen/Qwen2.5-3B", ## high response time
|
| 33 |
-
# "google/gemma-2-2b-jpn-it", ## high response time
|
| 34 |
-
# "impira/layoutlm-invoices", ## bad req
|
| 35 |
-
# "google/pix2struct-docvqa-large", ## bad req
|
| 36 |
-
# "google/gemma-7b-it", ## 17GB > 10GB
|
| 37 |
-
# "google/gemma-2b-it", ## high response time
|
| 38 |
-
# "HuggingFaceH4/zephyr-7b-beta", ## high response time
|
| 39 |
-
# "HuggingFaceH4/zephyr-7b-gemma-v0.1", ## bad req
|
| 40 |
-
# "microsoft/phi-2", ## high response time
|
| 41 |
-
# "TinyLlama/TinyLlama-1.1B-Chat-v1.0", ## high response time
|
| 42 |
-
# "mosaicml/mpt-7b-instruct", ## 13GB>10GB
|
| 43 |
-
# "google/flan-t5-xxl" ## high respons time
|
| 44 |
-
# "NousResearch/Yarn-Mistral-7b-128k", ## 14GB>10GB
|
| 45 |
-
# "Qwen/Qwen2.5-7B-Instruct", ## 15GB>10GB
|
| 46 |
]
|
| 47 |
|
| 48 |
embed_models = [
|
| 49 |
-
"BAAI/bge-small-en-v1.5",
|
| 50 |
"NeuML/pubmedbert-base-embeddings",
|
| 51 |
-
"BAAI/llm-embedder",
|
| 52 |
-
"BAAI/bge-large-en"
|
| 53 |
]
|
| 54 |
|
| 55 |
# Global variable for selected model
|
| 56 |
-
selected_llm_model_name = llm_models[0]
|
| 57 |
-
selected_embed_model_name = embed_models[0]
|
| 58 |
vector_index = None
|
| 59 |
|
| 60 |
# Initialize the parser
|
| 61 |
parser = LlamaParse(api_key=os.getenv("LLAMA_INDEX_API"), result_type='markdown')
|
| 62 |
-
# Define file extractor with various common extensions
|
| 63 |
file_extractor = {
|
| 64 |
-
'.pdf': parser,
|
| 65 |
-
'.docx': parser,
|
| 66 |
-
'.doc': parser,
|
| 67 |
-
'.txt': parser,
|
| 68 |
-
'.csv': parser,
|
| 69 |
-
'.xlsx': parser,
|
| 70 |
-
'.pptx': parser,
|
| 71 |
-
'.html': parser,
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
'.jpg': parser, # JPEG images
|
| 78 |
-
'.jpeg': parser, # JPEG images
|
| 79 |
-
'.png': parser, # PNG images
|
| 80 |
-
# '.bmp': parser, # Bitmap images
|
| 81 |
-
# '.tiff': parser, # TIFF images
|
| 82 |
-
# '.tif': parser, # TIFF images (alternative extension)
|
| 83 |
-
# '.gif': parser, # GIF images (can contain text)
|
| 84 |
-
|
| 85 |
-
# Scanned documents in image formats
|
| 86 |
-
'.webp': parser, # WebP images
|
| 87 |
-
'.svg': parser, # SVG files (vector format, may contain embedded text)
|
| 88 |
}
|
| 89 |
|
| 90 |
-
|
| 91 |
-
# File processing function
|
| 92 |
def load_files(file_path: str, embed_model_name: str):
|
| 93 |
try:
|
| 94 |
global vector_index
|
|
@@ -101,53 +61,43 @@ def load_files(file_path: str, embed_model_name: str):
|
|
| 101 |
except Exception as e:
|
| 102 |
return f"An error occurred: {e}"
|
| 103 |
|
| 104 |
-
|
| 105 |
-
# Function to handle the selected model from dropdown
|
| 106 |
def set_llm_model(selected_model):
|
| 107 |
global selected_llm_model_name
|
| 108 |
-
selected_llm_model_name = selected_model
|
| 109 |
-
|
| 110 |
-
# return f"Model set to: {selected_model_name}"
|
| 111 |
-
|
| 112 |
|
| 113 |
-
# Respond function that uses the globally set selected model
|
| 114 |
def respond(message, history):
|
| 115 |
try:
|
| 116 |
-
# Initialize the LLM with the selected model
|
| 117 |
llm = HuggingFaceInferenceAPI(
|
| 118 |
model_name=selected_llm_model_name,
|
| 119 |
-
contextWindow=8192,
|
| 120 |
-
maxTokens=1024,
|
| 121 |
-
temperature=0.3,
|
| 122 |
-
topP=0.9,
|
| 123 |
-
frequencyPenalty=0.5,
|
| 124 |
-
presencePenalty=0.5,
|
| 125 |
token=os.getenv("TOKEN")
|
| 126 |
)
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
return f"{selected_llm_model_name}:\n{str(bot_message)}"
|
| 134 |
-
except Exception as e:
|
| 135 |
-
if str(e) == "'NoneType' object has no attribute 'as_query_engine'":
|
| 136 |
return "Please upload a file."
|
|
|
|
| 137 |
return f"An error occurred: {e}"
|
| 138 |
|
| 139 |
def encode_image(image_path):
|
| 140 |
with open(image_path, "rb") as image_file:
|
| 141 |
return base64.b64encode(image_file.read()).decode('utf-8')
|
| 142 |
|
| 143 |
-
# Encode the images
|
| 144 |
github_logo_encoded = encode_image("Images/github-logo.png")
|
| 145 |
linkedin_logo_encoded = encode_image("Images/linkedin-logo.png")
|
| 146 |
website_logo_encoded = encode_image("Images/ai-logo.png")
|
| 147 |
|
| 148 |
-
# UI Setup
|
| 149 |
with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Roboto Mono")]), css='footer {visibility: hidden}') as demo:
|
| 150 |
-
gr.Markdown("# DocBot
|
| 151 |
with gr.Tabs():
|
| 152 |
with gr.TabItem("Intro"):
|
| 153 |
gr.Markdown(md.description)
|
|
@@ -158,7 +108,6 @@ with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Roboto Mono")]),
|
|
| 158 |
with gr.Row():
|
| 159 |
with gr.Column(scale=1):
|
| 160 |
file_input = gr.File(file_count="single", type='filepath', label="Step-1: Upload document")
|
| 161 |
-
# gr.Markdown("Dont know what to select check out in Intro tab")
|
| 162 |
embed_model_dropdown = gr.Dropdown(embed_models, label="Step-2: Select Embedding", interactive=True)
|
| 163 |
with gr.Row():
|
| 164 |
btn = gr.Button("Submit", variant='primary')
|
|
@@ -169,17 +118,13 @@ with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Roboto Mono")]),
|
|
| 169 |
gr.ChatInterface(
|
| 170 |
fn=respond,
|
| 171 |
chatbot=gr.Chatbot(height=500),
|
| 172 |
-
theme
|
| 173 |
-
show_progress='full',
|
| 174 |
-
# cache_mode='lazy',
|
| 175 |
textbox=gr.Textbox(placeholder="Step-4: Ask me questions on the uploaded document!", container=False)
|
| 176 |
)
|
| 177 |
gr.HTML(md.footer.format(github_logo_encoded, linkedin_logo_encoded, website_logo_encoded))
|
| 178 |
-
|
| 179 |
-
llm_model_dropdown.change(fn=set_llm_model, inputs=llm_model_dropdown)
|
| 180 |
btn.click(fn=load_files, inputs=[file_input, embed_model_dropdown], outputs=output)
|
| 181 |
clear.click(lambda: [None] * 3, outputs=[file_input, embed_model_dropdown, output])
|
| 182 |
|
| 183 |
-
# Launch the demo with a public link option
|
| 184 |
if __name__ == "__main__":
|
| 185 |
-
demo.launch(
|
|
|
|
| 6 |
import os
|
| 7 |
from dotenv import load_dotenv
|
| 8 |
import gradio as gr
|
| 9 |
+
import markdown as md
|
| 10 |
import base64
|
| 11 |
|
| 12 |
# Load environment variables
|
|
|
|
| 17 |
"meta-llama/Meta-Llama-3-8B-Instruct",
|
| 18 |
"mistralai/Mistral-7B-Instruct-v0.2",
|
| 19 |
"tiiuae/falcon-7b-instruct",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
]
|
| 21 |
|
| 22 |
embed_models = [
|
| 23 |
+
"BAAI/bge-small-en-v1.5",
|
| 24 |
"NeuML/pubmedbert-base-embeddings",
|
| 25 |
+
"BAAI/llm-embedder",
|
| 26 |
+
"BAAI/bge-large-en"
|
| 27 |
]
|
| 28 |
|
| 29 |
# Global variable for selected model
|
| 30 |
+
selected_llm_model_name = llm_models[0]
|
| 31 |
+
selected_embed_model_name = embed_models[0]
|
| 32 |
vector_index = None
|
| 33 |
|
| 34 |
# Initialize the parser
|
| 35 |
parser = LlamaParse(api_key=os.getenv("LLAMA_INDEX_API"), result_type='markdown')
|
|
|
|
| 36 |
file_extractor = {
|
| 37 |
+
'.pdf': parser,
|
| 38 |
+
'.docx': parser,
|
| 39 |
+
'.doc': parser,
|
| 40 |
+
'.txt': parser,
|
| 41 |
+
'.csv': parser,
|
| 42 |
+
'.xlsx': parser,
|
| 43 |
+
'.pptx': parser,
|
| 44 |
+
'.html': parser,
|
| 45 |
+
'.jpg': parser,
|
| 46 |
+
'.jpeg': parser,
|
| 47 |
+
'.png': parser,
|
| 48 |
+
'.webp': parser,
|
| 49 |
+
'.svg': parser,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
}
|
| 51 |
|
|
|
|
|
|
|
| 52 |
def load_files(file_path: str, embed_model_name: str):
|
| 53 |
try:
|
| 54 |
global vector_index
|
|
|
|
| 61 |
except Exception as e:
|
| 62 |
return f"An error occurred: {e}"
|
| 63 |
|
|
|
|
|
|
|
| 64 |
def set_llm_model(selected_model):
|
| 65 |
global selected_llm_model_name
|
| 66 |
+
selected_llm_model_name = selected_model
|
| 67 |
+
return f"Model set to: {selected_model}"
|
|
|
|
|
|
|
| 68 |
|
|
|
|
| 69 |
def respond(message, history):
|
| 70 |
try:
|
|
|
|
| 71 |
llm = HuggingFaceInferenceAPI(
|
| 72 |
model_name=selected_llm_model_name,
|
| 73 |
+
contextWindow=8192,
|
| 74 |
+
maxTokens=1024,
|
| 75 |
+
temperature=0.3,
|
| 76 |
+
topP=0.9,
|
| 77 |
+
frequencyPenalty=0.5,
|
| 78 |
+
presencePenalty=0.5,
|
| 79 |
token=os.getenv("TOKEN")
|
| 80 |
)
|
| 81 |
+
if vector_index is not None:
|
| 82 |
+
query_engine = vector_index.as_query_engine(llm=llm)
|
| 83 |
+
bot_message = query_engine.query(message)
|
| 84 |
+
print(f"\n{datetime.now()}:{selected_llm_model_name}:: {message} --> {str(bot_message)}\n")
|
| 85 |
+
return f"{selected_llm_model_name}:\n{str(bot_message)}"
|
| 86 |
+
else:
|
|
|
|
|
|
|
|
|
|
| 87 |
return "Please upload a file."
|
| 88 |
+
except Exception as e:
|
| 89 |
return f"An error occurred: {e}"
|
| 90 |
|
| 91 |
def encode_image(image_path):
|
| 92 |
with open(image_path, "rb") as image_file:
|
| 93 |
return base64.b64encode(image_file.read()).decode('utf-8')
|
| 94 |
|
|
|
|
| 95 |
github_logo_encoded = encode_image("Images/github-logo.png")
|
| 96 |
linkedin_logo_encoded = encode_image("Images/linkedin-logo.png")
|
| 97 |
website_logo_encoded = encode_image("Images/ai-logo.png")
|
| 98 |
|
|
|
|
| 99 |
with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Roboto Mono")]), css='footer {visibility: hidden}') as demo:
|
| 100 |
+
gr.Markdown("# DocBot")
|
| 101 |
with gr.Tabs():
|
| 102 |
with gr.TabItem("Intro"):
|
| 103 |
gr.Markdown(md.description)
|
|
|
|
| 108 |
with gr.Row():
|
| 109 |
with gr.Column(scale=1):
|
| 110 |
file_input = gr.File(file_count="single", type='filepath', label="Step-1: Upload document")
|
|
|
|
| 111 |
embed_model_dropdown = gr.Dropdown(embed_models, label="Step-2: Select Embedding", interactive=True)
|
| 112 |
with gr.Row():
|
| 113 |
btn = gr.Button("Submit", variant='primary')
|
|
|
|
| 118 |
gr.ChatInterface(
|
| 119 |
fn=respond,
|
| 120 |
chatbot=gr.Chatbot(height=500),
|
| 121 |
+
theme="soft",
|
|
|
|
|
|
|
| 122 |
textbox=gr.Textbox(placeholder="Step-4: Ask me questions on the uploaded document!", container=False)
|
| 123 |
)
|
| 124 |
gr.HTML(md.footer.format(github_logo_encoded, linkedin_logo_encoded, website_logo_encoded))
|
| 125 |
+
llm_model_dropdown.change(fn=set_llm_model, inputs=llm_model_dropdown, outputs=[gr.Text(label="Model selected")])
|
|
|
|
| 126 |
btn.click(fn=load_files, inputs=[file_input, embed_model_dropdown], outputs=output)
|
| 127 |
clear.click(lambda: [None] * 3, outputs=[file_input, embed_model_dropdown, output])
|
| 128 |
|
|
|
|
| 129 |
if __name__ == "__main__":
|
| 130 |
+
demo.launch()
|