Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import pandas as pd | |
| from joblib import load | |
| def cardio(age,gender,ap_hi,ap_lo,cholesterol,gluc,smoke,alco,active,height,weight): | |
| model = load('cardiosight.joblib') | |
| df = pd.DataFrame.from_dict( | |
| { | |
| "age": [age*365], | |
| "gender":[0 if gender=='Male' else 1], | |
| "ap_hi": [ap_hi], | |
| "ap_lo": [ap_lo], | |
| "cholesterol": [cholesterol + 1], | |
| "gluc": [gluc + 1], | |
| "smoke":[1 if smoke=='Yes' else 0], | |
| "alco": [1 if alco=='Yes' else 0], | |
| "active": [1 if active=='Yes' else 0], | |
| "newvalues_height": [height], | |
| "newvalues_weight": [weight], | |
| "New_values_BMI": weight/((height/100)**2), | |
| } | |
| ) | |
| pred = model.predict(df)[0] | |
| if pred==1: | |
| predicted="Tiene un riesgo alto de sufrir problemas cardiovasculares" | |
| else: | |
| predicted="Su riesgo de sufrir problemas cardiovasculares es muy bajo. Siga as铆." | |
| return "Su IMC es de "+str(round(df['New_values_BMI'][0], 2))+'. '+predicted | |
| iface = gr.Interface( | |
| cardio, | |
| [ | |
| gr.Slider(1,99,label="Age"), | |
| gr.Dropdown(choices=['Male', 'Female'], label='Gender', value='Female'), | |
| gr.Slider(10,250,label="Diastolic Preassure"), | |
| gr.Slider(10,250,label="Sistolic Preassure"), | |
| gr.Radio(["Normal","High","Very High"],type="index",label="Cholesterol"), | |
| gr.Radio(["Normal","High","Very High"],type="index",label="Glucosa Level"), | |
| gr.Dropdown(choices=['Yes', 'No'], label='Smoke', value='No'), | |
| gr.Dropdown(choices=['Yes', 'No'], label='Alcohol', value='No'), | |
| gr.Dropdown(choices=['Yes', 'No'], label='Active', value='Yes'), | |
| gr.Slider(30,220,label="Height in cm"), | |
| gr.Slider(10,300,label="Weight in Kg"), | |
| ], | |
| "text", | |
| examples=[ | |
| [20,'Male',110,60,"Normal","Normal",'No','No','Yes',168,60], | |
| [30,'Female',120,70,"High","High",'No','Yes','Yes',143,70], | |
| [40,'Male',130,80,"Very High","Very High",'Yes','Yes','No',185,80], | |
| [50,'Female',140,90,"Normal","High",'Yes','No','No',165,90], | |
| [60,'Male',150,100,"High","Very High",'No','No','Yes',175,100], | |
| [70,'Female',160,90,"Very High","Normal",'Yes','Yes','No',185,110], | |
| ], | |
| title = 'Calculadora de Riesgo Cardiovascular mediante Inteligencia Artificial', | |
| description = 'Duplicaci贸n del proyecto de CARDIOSIGHT. He cambiado los botones tipo check por dropdown y calculado el IMC a partir de la altura y el peso. M谩s informaci贸n: https://saturdays.ai/2022/03/16/cardiosight-machine-learning-para-calcular-riesgo-cardiovascular/' | |
| ) | |
| iface.launch() |