Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import base64 | |
| import streamlit as st | |
| import plotly.express as px | |
| df = px.data.iris() | |
| def get_img_as_base64(file): | |
| with open(file, "rb") as f: | |
| data = f.read() | |
| return base64.b64encode(data).decode() | |
| page_bg_img = f""" | |
| <style> | |
| [data-testid="stAppViewContainer"] > .main {{ | |
| background-image: url("https://wallpapercave.com/wp/wp6480460.jpg"); | |
| background-size: 115%; | |
| background-position: top left; | |
| background-repeat: no-repeat; | |
| background-attachment: local; | |
| }} | |
| [data-testid="stSidebar"] > div:first-child {{ | |
| background-image: url("https://ibb.co/ZBkdJRg"); | |
| background-size: 115%; | |
| background-position: center; | |
| background-repeat: no-repeat; | |
| background-attachment: fixed; | |
| }} | |
| [data-testid="stHeader"] {{ | |
| background: rgba(0,0,0,0); | |
| }} | |
| [data-testid="stToolbar"] {{ | |
| right: 2rem; | |
| }} | |
| div.css-1n76uvr.e1tzin5v0 {{ | |
| background-color: rgba(238, 238, 238, 0.5); | |
| border: 10px solid #EEEEEE; | |
| padding: 5% 5% 5% 10%; | |
| border-radius: 5px; | |
| }} | |
| </style> | |
| """ | |
| st.markdown(page_bg_img, unsafe_allow_html=True) | |
| import tensorflow as tf | |
| from tensorflow import keras | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| ################################################################################################ | |
| #Тут нужно будет добаить модель. Ниже пример: | |
| # # Загрузка модели | |
| # model = keras.models.load_model('cgan_model.h5') | |
| # # Задание размерностей входных данных модели | |
| # latent_dim = 128 | |
| # num_classes = 10 | |
| # # Функция для генерации изображения | |
| # def generate_image(number): | |
| # random_latent_vector = tf.random.normal(shape=(1, latent_dim)) | |
| # one_hot_label = tf.one_hot([number], num_classes) | |
| # input_data = tf.concat([random_latent_vector, one_hot_label], axis=1) | |
| # generated_image = model.predict(input_data) | |
| # generated_image = generated_image.reshape(28, 28) | |
| # generated_image = tf.image.resize(generated_image[None, ...], (28, 28))[0] # Добавлено [None, ...] для добавления измерения | |
| # return generated_image | |
| ################################################################################################ | |
| #Оформление | |
| col1, col2, col3 = st.columns([1,5,1]) | |
| with col2: | |
| st.title('Название модели') | |
| col1, col2, col3 = st.columns([2,5,2]) | |
| with col2: | |
| number = st.slider('Выберите число:', 0, 9, step=1) | |
| ################################################################################################ | |
| # Часть, отображаемая на странице | |
| # number = st.slider('Выберите число:', 0, 9, step=1) | |
| # #col1.subheader("Гистограмма total_bill:") | |
| # # Генерация и отображение изображения | |
| # generated_image = generate_image(number) | |
| # generated_image_np = generated_image.numpy() # Преобразование в массив NumPy | |
| # fig, ax = plt.subplots() | |
| # ax.scatter([1, 2], [1, 2], color='black') | |
| # plt.imshow(generated_image_np, cmap='gray') | |
| # plt.axis('off') | |
| # fig.set_size_inches(3, 3) | |
| # st.pyplot(fig) | |
| ################################################################################################ | |
| #st.markdown("<div style='text-align: center; font-size: 25px;'> ", unsafe_allow_html=True) | |
| #st.markdown("<div style='text-align: center; font-size: 25px;'> ", unsafe_allow_html=True) |