Spaces:
Runtime error
Runtime error
| import torch | |
| from einops import rearrange | |
| from torch import nn | |
| from .blocks import AdaRMSNorm | |
| from .transformer import Attention, FeedForward, RotaryEmbedding, LayerNorm | |
| def checkpoint(function, *args, **kwargs): | |
| kwargs.setdefault("use_reentrant", False) | |
| return torch.utils.checkpoint.checkpoint(function, *args, **kwargs) | |
| # Adapted from https://github.com/lucidrains/local-attention/blob/master/local_attention/transformer.py | |
| class ContinuousLocalTransformer(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| dim, | |
| depth, | |
| dim_in = None, | |
| dim_out = None, | |
| causal = False, | |
| local_attn_window_size = 64, | |
| heads = 8, | |
| ff_mult = 2, | |
| cond_dim = 0, | |
| cross_attn_cond_dim = 0, | |
| **kwargs | |
| ): | |
| super().__init__() | |
| dim_head = dim//heads | |
| self.layers = nn.ModuleList([]) | |
| self.project_in = nn.Linear(dim_in, dim) if dim_in is not None else nn.Identity() | |
| self.project_out = nn.Linear(dim, dim_out) if dim_out is not None else nn.Identity() | |
| self.local_attn_window_size = local_attn_window_size | |
| self.cond_dim = cond_dim | |
| self.cross_attn_cond_dim = cross_attn_cond_dim | |
| self.rotary_pos_emb = RotaryEmbedding(max(dim_head // 2, 32)) | |
| for _ in range(depth): | |
| self.layers.append(nn.ModuleList([ | |
| AdaRMSNorm(dim, cond_dim, eps=1e-8) if cond_dim > 0 else LayerNorm(dim), | |
| Attention( | |
| dim=dim, | |
| dim_heads=dim_head, | |
| causal=causal, | |
| zero_init_output=True, | |
| natten_kernel_size=local_attn_window_size, | |
| ), | |
| Attention( | |
| dim=dim, | |
| dim_heads=dim_head, | |
| dim_context = cross_attn_cond_dim, | |
| zero_init_output=True | |
| ) if self.cross_attn_cond_dim > 0 else nn.Identity(), | |
| AdaRMSNorm(dim, cond_dim, eps=1e-8) if cond_dim > 0 else LayerNorm(dim), | |
| FeedForward(dim = dim, mult = ff_mult, no_bias=True) | |
| ])) | |
| def forward(self, x, mask = None, cond = None, cross_attn_cond = None, cross_attn_cond_mask = None, prepend_cond = None): | |
| x = checkpoint(self.project_in, x) | |
| if prepend_cond is not None: | |
| x = torch.cat([prepend_cond, x], dim=1) | |
| pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1]) | |
| for attn_norm, attn, xattn, ff_norm, ff in self.layers: | |
| residual = x | |
| if cond is not None: | |
| x = checkpoint(attn_norm, x, cond) | |
| else: | |
| x = checkpoint(attn_norm, x) | |
| x = checkpoint(attn, x, mask = mask, rotary_pos_emb=pos_emb) + residual | |
| if cross_attn_cond is not None: | |
| x = checkpoint(xattn, x, context=cross_attn_cond, context_mask=cross_attn_cond_mask) + x | |
| residual = x | |
| if cond is not None: | |
| x = checkpoint(ff_norm, x, cond) | |
| else: | |
| x = checkpoint(ff_norm, x) | |
| x = checkpoint(ff, x) + residual | |
| return checkpoint(self.project_out, x) | |
| class TransformerDownsampleBlock1D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels, | |
| embed_dim = 768, | |
| depth = 3, | |
| heads = 12, | |
| downsample_ratio = 2, | |
| local_attn_window_size = 64, | |
| **kwargs | |
| ): | |
| super().__init__() | |
| self.downsample_ratio = downsample_ratio | |
| self.transformer = ContinuousLocalTransformer( | |
| dim=embed_dim, | |
| depth=depth, | |
| heads=heads, | |
| local_attn_window_size=local_attn_window_size, | |
| **kwargs | |
| ) | |
| self.project_in = nn.Linear(in_channels, embed_dim, bias=False) if in_channels != embed_dim else nn.Identity() | |
| self.project_down = nn.Linear(embed_dim * self.downsample_ratio, embed_dim, bias=False) | |
| def forward(self, x): | |
| x = checkpoint(self.project_in, x) | |
| # Compute | |
| x = self.transformer(x) | |
| # Trade sequence length for channels | |
| x = rearrange(x, "b (n r) c -> b n (c r)", r=self.downsample_ratio) | |
| # Project back to embed dim | |
| x = checkpoint(self.project_down, x) | |
| return x | |
| class TransformerUpsampleBlock1D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels, | |
| embed_dim, | |
| depth = 3, | |
| heads = 12, | |
| upsample_ratio = 2, | |
| local_attn_window_size = 64, | |
| **kwargs | |
| ): | |
| super().__init__() | |
| self.upsample_ratio = upsample_ratio | |
| self.transformer = ContinuousLocalTransformer( | |
| dim=embed_dim, | |
| depth=depth, | |
| heads=heads, | |
| local_attn_window_size = local_attn_window_size, | |
| **kwargs | |
| ) | |
| self.project_in = nn.Linear(in_channels, embed_dim, bias=False) if in_channels != embed_dim else nn.Identity() | |
| self.project_up = nn.Linear(embed_dim, embed_dim * self.upsample_ratio, bias=False) | |
| def forward(self, x): | |
| # Project to embed dim | |
| x = checkpoint(self.project_in, x) | |
| # Project to increase channel dim | |
| x = checkpoint(self.project_up, x) | |
| # Trade channels for sequence length | |
| x = rearrange(x, "b n (c r) -> b (n r) c", r=self.upsample_ratio) | |
| # Compute | |
| x = self.transformer(x) | |
| return x | |
| class TransformerEncoder1D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels, | |
| out_channels, | |
| embed_dims = [96, 192, 384, 768], | |
| heads = [12, 12, 12, 12], | |
| depths = [3, 3, 3, 3], | |
| ratios = [2, 2, 2, 2], | |
| local_attn_window_size = 64, | |
| **kwargs | |
| ): | |
| super().__init__() | |
| layers = [] | |
| for layer in range(len(depths)): | |
| prev_dim = embed_dims[layer - 1] if layer > 0 else embed_dims[0] | |
| layers.append( | |
| TransformerDownsampleBlock1D( | |
| in_channels = prev_dim, | |
| embed_dim = embed_dims[layer], | |
| heads = heads[layer], | |
| depth = depths[layer], | |
| downsample_ratio = ratios[layer], | |
| local_attn_window_size = local_attn_window_size, | |
| **kwargs | |
| ) | |
| ) | |
| self.layers = nn.Sequential(*layers) | |
| self.project_in = nn.Linear(in_channels, embed_dims[0], bias=False) | |
| self.project_out = nn.Linear(embed_dims[-1], out_channels, bias=False) | |
| def forward(self, x): | |
| x = rearrange(x, "b c n -> b n c") | |
| x = checkpoint(self.project_in, x) | |
| x = self.layers(x) | |
| x = checkpoint(self.project_out, x) | |
| x = rearrange(x, "b n c -> b c n") | |
| return x | |
| class TransformerDecoder1D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels, | |
| out_channels, | |
| embed_dims = [768, 384, 192, 96], | |
| heads = [12, 12, 12, 12], | |
| depths = [3, 3, 3, 3], | |
| ratios = [2, 2, 2, 2], | |
| local_attn_window_size = 64, | |
| **kwargs | |
| ): | |
| super().__init__() | |
| layers = [] | |
| for layer in range(len(depths)): | |
| prev_dim = embed_dims[layer - 1] if layer > 0 else embed_dims[0] | |
| layers.append( | |
| TransformerUpsampleBlock1D( | |
| in_channels = prev_dim, | |
| embed_dim = embed_dims[layer], | |
| heads = heads[layer], | |
| depth = depths[layer], | |
| upsample_ratio = ratios[layer], | |
| local_attn_window_size = local_attn_window_size, | |
| **kwargs | |
| ) | |
| ) | |
| self.layers = nn.Sequential(*layers) | |
| self.project_in = nn.Linear(in_channels, embed_dims[0], bias=False) | |
| self.project_out = nn.Linear(embed_dims[-1], out_channels, bias=False) | |
| def forward(self, x): | |
| x = rearrange(x, "b c n -> b n c") | |
| x = checkpoint(self.project_in, x) | |
| x = self.layers(x) | |
| x = checkpoint(self.project_out, x) | |
| x = rearrange(x, "b n c -> b c n") | |
| return x |