Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -71,12 +71,15 @@ from huggingface_hub import HfFileSystem
|
|
| 71 |
|
| 72 |
# dataset = load_dataset('Seetha/Visualization', streaming=True)
|
| 73 |
# df = pd.DataFrame.from_dict(dataset['train'])
|
| 74 |
-
DATASET_REPO_URL = "https://huggingface.co/datasets/Seetha/Visualization"
|
| 75 |
-
DATA_FILENAME = "level2.json"
|
| 76 |
#DATA_FILE = os.path.join("data", DATA_FILENAME)
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 79 |
-
st.write("is none?", HF_TOKEN is None)
|
| 80 |
|
| 81 |
def main():
|
| 82 |
|
|
@@ -481,28 +484,12 @@ def main():
|
|
| 481 |
'value': int(df_tab.loc[row, col])
|
| 482 |
})
|
| 483 |
|
| 484 |
-
HfApi().delete_file(path_in_repo =
|
| 485 |
st.write('file-deleted')
|
| 486 |
fs = HfFileSystem(token=HF_TOKEN)
|
| 487 |
-
with fs.open('datasets/Seetha/
|
| 488 |
json.dump(json_data, f)
|
| 489 |
-
|
| 490 |
-
# level2_df = pd.read_json(dat)
|
| 491 |
-
# level2_df = pd.DataFrame.from_dict(dat, orient='index')
|
| 492 |
-
# level2_df.reset_index(level=0,inplace=True)
|
| 493 |
-
#st.write(level2_df)
|
| 494 |
-
# with open('level2.json','r+') as fi:
|
| 495 |
-
# data = fi.read()
|
| 496 |
-
# #st.write(data)
|
| 497 |
-
# fi.seek(0)
|
| 498 |
-
# fi.write(dat)
|
| 499 |
-
# fi.truncate()
|
| 500 |
-
|
| 501 |
-
#updated_dataset = dataset.map(lambda example: {'new_value': level2_df['value'], 'new_source':level2_df['source'], 'new_target': level2_df['target']},remove_columns=['value','source','target'])
|
| 502 |
-
|
| 503 |
-
# st.write(updated_dataset)
|
| 504 |
-
#updated_dataset.push_to_hub('Seetha/visual', token=os.environ.get('HF_TOKEN'))
|
| 505 |
-
# updated_dataset.push_to_hub('Seetha/Visualization')
|
| 506 |
df_final1.to_csv('predictions.csv')
|
| 507 |
csv_file = "predictions.csv"
|
| 508 |
json_file = "detailedResults.json"
|
|
@@ -515,15 +502,13 @@ def main():
|
|
| 515 |
data_list = []
|
| 516 |
for row in csv_data:
|
| 517 |
data_list.append(dict(row))
|
| 518 |
-
|
| 519 |
# # Convert the list of dictionaries to JSON
|
| 520 |
json_data = json.dumps(data_list)
|
| 521 |
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
# #fi.seek(0)
|
| 526 |
-
with open('detailedResults.json','w') as fi:
|
| 527 |
#data = json.load(fi)
|
| 528 |
fi.write(json_data)
|
| 529 |
|
|
|
|
| 71 |
|
| 72 |
# dataset = load_dataset('Seetha/Visualization', streaming=True)
|
| 73 |
# df = pd.DataFrame.from_dict(dataset['train'])
|
| 74 |
+
# DATASET_REPO_URL = "https://huggingface.co/datasets/Seetha/Visualization"
|
| 75 |
+
# DATA_FILENAME = "level2.json"
|
| 76 |
#DATA_FILE = os.path.join("data", DATA_FILENAME)
|
| 77 |
+
DATASET_REPO_URL = "https://huggingface.co/datasets/Seetha/visual_files"
|
| 78 |
+
DATA_FILENAME = "detailedResults.json"
|
| 79 |
+
DATA_FILENAME1 = "level2.json"
|
| 80 |
|
| 81 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 82 |
+
#st.write("is none?", HF_TOKEN is None)
|
| 83 |
|
| 84 |
def main():
|
| 85 |
|
|
|
|
| 484 |
'value': int(df_tab.loc[row, col])
|
| 485 |
})
|
| 486 |
|
| 487 |
+
HfApi().delete_file(path_in_repo = DATA_FILENAME1 ,repo_id = 'Seetha/visual_files',token= HF_TOKEN,repo_type='dataset')
|
| 488 |
st.write('file-deleted')
|
| 489 |
fs = HfFileSystem(token=HF_TOKEN)
|
| 490 |
+
with fs.open('datasets/Seetha/visual_files/level2.json', 'w') as f:
|
| 491 |
json.dump(json_data, f)
|
| 492 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 493 |
df_final1.to_csv('predictions.csv')
|
| 494 |
csv_file = "predictions.csv"
|
| 495 |
json_file = "detailedResults.json"
|
|
|
|
| 502 |
data_list = []
|
| 503 |
for row in csv_data:
|
| 504 |
data_list.append(dict(row))
|
| 505 |
+
|
| 506 |
# # Convert the list of dictionaries to JSON
|
| 507 |
json_data = json.dumps(data_list)
|
| 508 |
|
| 509 |
+
HfApi().delete_file(path_in_repo = DATA_FILENAME ,repo_id = 'Seetha/visual_files',token= HF_TOKEN,repo_type='dataset')
|
| 510 |
+
st.write('file2-deleted')
|
| 511 |
+
with fs.open('datasets/Seetha/visual_files/detailedResults.json','w') as fi:
|
|
|
|
|
|
|
| 512 |
#data = json.load(fi)
|
| 513 |
fi.write(json_data)
|
| 514 |
|