Spaces:
Sleeping
Sleeping
gseetha04
commited on
Commit
·
5fcdc9c
1
Parent(s):
9bdb04e
scriptcomm
Browse files- ST_BusT2KG_demo_final.py +544 -0
ST_BusT2KG_demo_final.py
ADDED
|
@@ -0,0 +1,544 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# import all packages
|
| 2 |
+
import requests
|
| 3 |
+
import streamlit as st
|
| 4 |
+
from sklearn.model_selection import StratifiedKFold
|
| 5 |
+
from sklearn.model_selection import train_test_split
|
| 6 |
+
from sklearn.model_selection import KFold
|
| 7 |
+
# tokenizer
|
| 8 |
+
from transformers import AutoTokenizer, DistilBertTokenizerFast
|
| 9 |
+
# sequence tagging model + training-related
|
| 10 |
+
from transformers import DistilBertForTokenClassification, Trainer, TrainingArguments
|
| 11 |
+
import numpy as np
|
| 12 |
+
import pandas as pd
|
| 13 |
+
import torch
|
| 14 |
+
import json
|
| 15 |
+
import sys
|
| 16 |
+
import os
|
| 17 |
+
#from datasets import load_metric
|
| 18 |
+
from sklearn.metrics import classification_report
|
| 19 |
+
from pandas import read_csv
|
| 20 |
+
from sklearn.linear_model import LogisticRegression
|
| 21 |
+
import sklearn.model_selection
|
| 22 |
+
from sklearn.feature_extraction.text import TfidfTransformer
|
| 23 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
| 24 |
+
from sklearn.naive_bayes import MultinomialNB
|
| 25 |
+
from sklearn.model_selection import GridSearchCV
|
| 26 |
+
from sklearn.pipeline import Pipeline, FeatureUnion
|
| 27 |
+
import math
|
| 28 |
+
from sklearn.metrics import accuracy_score
|
| 29 |
+
from sklearn.metrics import precision_recall_fscore_support
|
| 30 |
+
from sklearn.model_selection import train_test_split
|
| 31 |
+
import json
|
| 32 |
+
import re
|
| 33 |
+
import numpy as np
|
| 34 |
+
import pandas as pd
|
| 35 |
+
import re
|
| 36 |
+
import nltk
|
| 37 |
+
#stemmer = nltk.SnowballStemmer("english")
|
| 38 |
+
#from nltk.corpus import stopwords
|
| 39 |
+
import string
|
| 40 |
+
from sklearn.model_selection import train_test_split
|
| 41 |
+
# import seaborn as sns
|
| 42 |
+
# from sklearn.metrics import confusion_matrix
|
| 43 |
+
# from sklearn.metrics import classification_report, ConfusionMatrixDisplay
|
| 44 |
+
from transformers import AutoTokenizer, Trainer, TrainingArguments, AutoModelForSequenceClassification, AutoConfig
|
| 45 |
+
import torch
|
| 46 |
+
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
|
| 47 |
+
import itertools
|
| 48 |
+
import json
|
| 49 |
+
import glob
|
| 50 |
+
from transformers import TextClassificationPipeline, TFAutoModelForSequenceClassification, AutoTokenizer
|
| 51 |
+
from transformers import pipeline
|
| 52 |
+
import pickle
|
| 53 |
+
import urllib.request
|
| 54 |
+
from sklearn.feature_extraction.text import TfidfTransformer
|
| 55 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
| 56 |
+
#from PyPDF2 import PdfReader
|
| 57 |
+
#from urllib.request import urlopen
|
| 58 |
+
#from tabulate import tabulate
|
| 59 |
+
import csv
|
| 60 |
+
import gdown
|
| 61 |
+
import zipfile
|
| 62 |
+
import wget
|
| 63 |
+
import pdfplumber
|
| 64 |
+
import pathlib
|
| 65 |
+
import shutil
|
| 66 |
+
import webbrowser
|
| 67 |
+
from streamlit.components.v1 import html
|
| 68 |
+
import streamlit.components.v1 as components
|
| 69 |
+
from PyPDF2 import PdfReader
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
#device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 73 |
+
|
| 74 |
+
# from git import Repo
|
| 75 |
+
|
| 76 |
+
# Repo.clone_from('https://github.com/gseetha04/IMA-weights.git', branch='master')
|
| 77 |
+
|
| 78 |
+
def main():
|
| 79 |
+
|
| 80 |
+
st.title("Text to Causal Knowledge Graph")
|
| 81 |
+
st.sidebar.title("Please upload your text documents in one file here:")
|
| 82 |
+
k=2
|
| 83 |
+
seed = 1
|
| 84 |
+
k1= 5
|
| 85 |
+
|
| 86 |
+
uploaded_file = st.sidebar.file_uploader("Choose a file", type = "pdf")
|
| 87 |
+
text_list = []
|
| 88 |
+
causal_sents = []
|
| 89 |
+
|
| 90 |
+
reader = PdfReader(uploaded_file)
|
| 91 |
+
|
| 92 |
+
for page in reader.pages:
|
| 93 |
+
text = page.extract_text()
|
| 94 |
+
text_list.append(text)
|
| 95 |
+
|
| 96 |
+
text_list_final = [x.replace('\n', '') for x in text_list]
|
| 97 |
+
text_list_final = re.sub('"', '', str(text_list_final))
|
| 98 |
+
|
| 99 |
+
sentences = nltk.sent_tokenize(text_list_final)
|
| 100 |
+
|
| 101 |
+
result =[]
|
| 102 |
+
for i in sentences:
|
| 103 |
+
result1 = i.lower()
|
| 104 |
+
result2 = re.sub(r'[^\w\s]','',result1)
|
| 105 |
+
result.append(result2)
|
| 106 |
+
|
| 107 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
| 108 |
+
model_path = "checkpoint-2850"
|
| 109 |
+
|
| 110 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path,id2label={0:'non-causal',1:'causal'})
|
| 111 |
+
|
| 112 |
+
pipe1 = pipeline("text-classification", model=model,tokenizer=tokenizer)
|
| 113 |
+
for sent in result:
|
| 114 |
+
pred = pipe1(sent)
|
| 115 |
+
for lab in pred:
|
| 116 |
+
if lab['label'] == 'causal': #causal
|
| 117 |
+
causal_sents.append(sent)
|
| 118 |
+
|
| 119 |
+
model_name = "distilbert-base-uncased"
|
| 120 |
+
tokenizer = DistilBertTokenizerFast.from_pretrained(model_name)
|
| 121 |
+
model_path1 = "DistilBertforTokenClassification"
|
| 122 |
+
|
| 123 |
+
model = DistilBertForTokenClassification.from_pretrained(model_path1, id2label={0:'CT',1:'E',2:'C',3:'O'}) #len(unique_tags),, num_labels= 7,
|
| 124 |
+
pipe = pipeline('ner', model=model, tokenizer=tokenizer,aggregation_strategy='simple') #grouped_entities=True
|
| 125 |
+
|
| 126 |
+
sentence_pred = []
|
| 127 |
+
class_list = []
|
| 128 |
+
entity_list = []
|
| 129 |
+
for k in causal_sents:
|
| 130 |
+
pred= pipe(k)
|
| 131 |
+
#st.write(pred)
|
| 132 |
+
for i in pred:
|
| 133 |
+
|
| 134 |
+
sentence_pred.append(k)
|
| 135 |
+
class_list.append(i['word'])
|
| 136 |
+
entity_list.append(i['entity_group'])
|
| 137 |
+
|
| 138 |
+
filename = 'Checkpoint-classification.sav'
|
| 139 |
+
count_vect = CountVectorizer(ngram_range=[1,3])
|
| 140 |
+
tfidf_transformer=TfidfTransformer()
|
| 141 |
+
loaded_model = pickle.load(open(filename, 'rb'))
|
| 142 |
+
loaded_vectorizer = pickle.load(open('vectorizefile_classification.pickle', 'rb'))
|
| 143 |
+
|
| 144 |
+
pipeline_test_output = loaded_vectorizer.transform(class_list)
|
| 145 |
+
predicted = loaded_model.predict(pipeline_test_output)
|
| 146 |
+
pred1 = predicted
|
| 147 |
+
level0 = []
|
| 148 |
+
count =0
|
| 149 |
+
for i in predicted:
|
| 150 |
+
if i == 3:
|
| 151 |
+
level0.append('Non-Performance')
|
| 152 |
+
count +=1
|
| 153 |
+
else:
|
| 154 |
+
level0.append('Performance')
|
| 155 |
+
count +=1
|
| 156 |
+
|
| 157 |
+
list_pred = {0: 'Customers',1:'Employees',2:'Investors',3:'Non-performance',4:'Society',5:'Unclassified'}
|
| 158 |
+
pred_val = [list_pred[i] for i in pred1]
|
| 159 |
+
|
| 160 |
+
#print('count',count)
|
| 161 |
+
|
| 162 |
+
sent_id, unique = pd.factorize(sentence_pred)
|
| 163 |
+
|
| 164 |
+
final_list = pd.DataFrame(
|
| 165 |
+
{'Id': sent_id,
|
| 166 |
+
'Full sentence': sentence_pred,
|
| 167 |
+
'Component': class_list,
|
| 168 |
+
'cause/effect': entity_list,
|
| 169 |
+
'Label_level1': level0,
|
| 170 |
+
'Label_level2': pred_val
|
| 171 |
+
})
|
| 172 |
+
s = final_list['Component'].shift(-1)
|
| 173 |
+
m = s.str.startswith('##', na=False)
|
| 174 |
+
final_list.loc[m, 'Component'] += (' ' + s[m])
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
final_list1 = final_list[~final_list['Component'].astype(str).str.startswith('##')]
|
| 178 |
+
|
| 179 |
+
li = []
|
| 180 |
+
uni = final_list1['Id'].unique()
|
| 181 |
+
for i in uni:
|
| 182 |
+
df_new = final_list1[final_list1['Id'] == i]
|
| 183 |
+
uni1 = df_new['Id'].unique()
|
| 184 |
+
if 'E' not in df_new.values:
|
| 185 |
+
li.append(uni1)
|
| 186 |
+
out = np.concatenate(li).ravel()
|
| 187 |
+
li_pan = pd.DataFrame(out,columns=['Id'])
|
| 188 |
+
df3 = pd.merge(final_list1, li_pan[['Id']], on='Id', how='left', indicator=True) \
|
| 189 |
+
.query("_merge == 'left_only'") \
|
| 190 |
+
.drop('_merge',1)
|
| 191 |
+
|
| 192 |
+
df = df3.groupby(['Id','Full sentence','cause/effect', 'Label_level1', 'Label_level2'])['Component'].apply(', '.join).reset_index()
|
| 193 |
+
|
| 194 |
+
df["cause/effect"].replace({"C": "cause", "E": "effect"}, inplace=True)
|
| 195 |
+
df_final = df[df['cause/effect'] != 'CT']
|
| 196 |
+
df['New string'] = df_final['Component'].replace(r'[##]+', ' ', regex=True)
|
| 197 |
+
df_final = df_final.drop('Component',1)
|
| 198 |
+
df_final.insert(2, "Component", df['New string'], True)
|
| 199 |
+
|
| 200 |
+
df_final.to_csv('predictions.csv')
|
| 201 |
+
|
| 202 |
+
count_NP_NP = 0
|
| 203 |
+
count_NP_investor = 0
|
| 204 |
+
count_NP_customer = 0
|
| 205 |
+
count_NP_employees = 0
|
| 206 |
+
count_NP_society = 0
|
| 207 |
+
|
| 208 |
+
count_inv_np = 0
|
| 209 |
+
count_inv_investor = 0
|
| 210 |
+
count_inv_customer = 0
|
| 211 |
+
count_inv_employee = 0
|
| 212 |
+
count_inv_society = 0
|
| 213 |
+
|
| 214 |
+
count_cus_np = 0
|
| 215 |
+
count_cus_investor = 0
|
| 216 |
+
count_cus_customer = 0
|
| 217 |
+
count_cus_employee = 0
|
| 218 |
+
count_cus_society = 0
|
| 219 |
+
|
| 220 |
+
count_emp_np = 0
|
| 221 |
+
count_emp_investor = 0
|
| 222 |
+
count_emp_customer = 0
|
| 223 |
+
count_emp_employee = 0
|
| 224 |
+
count_emp_society = 0
|
| 225 |
+
|
| 226 |
+
count_soc_np = 0
|
| 227 |
+
count_soc_investor = 0
|
| 228 |
+
count_soc_customer = 0
|
| 229 |
+
count_soc_employee = 0
|
| 230 |
+
count_soc_society = 0
|
| 231 |
+
for i in range(0,df_final['Id'].max()):
|
| 232 |
+
j = df_final.loc[df_final['Id'] == i]
|
| 233 |
+
cause_tab = j.loc[j['cause/effect'] == 'cause']
|
| 234 |
+
effect_tab = j.loc[j['cause/effect'] == 'effect']
|
| 235 |
+
cause_coun_NP = (cause_tab.Label_level2 == 'Non-performance').sum()
|
| 236 |
+
effect_coun_NP = (effect_tab.Label_level2 == 'Non-performance').sum()
|
| 237 |
+
|
| 238 |
+
if (cause_coun_NP > 0) and (effect_coun_NP > 0):
|
| 239 |
+
count_NP = cause_coun_NP if cause_coun_NP >= effect_coun_NP else effect_coun_NP
|
| 240 |
+
else:
|
| 241 |
+
count_NP = 0
|
| 242 |
+
effect_NP_inv = (effect_tab.Label_level2 == 'Investors').sum()
|
| 243 |
+
if (cause_coun_NP > 0) and (effect_NP_inv > 0):
|
| 244 |
+
count_NP_inv = cause_coun_NP if cause_coun_NP >= effect_NP_inv else effect_NP_inv
|
| 245 |
+
else:
|
| 246 |
+
count_NP_inv = 0
|
| 247 |
+
effect_NP_cus = (effect_tab.Label_level2 == 'Customers').sum()
|
| 248 |
+
if (cause_coun_NP > 0) and (effect_NP_cus > 0):
|
| 249 |
+
count_NP_cus = cause_coun_NP if cause_coun_NP >= effect_NP_cus else effect_NP_cus
|
| 250 |
+
else:
|
| 251 |
+
count_NP_cus = 0
|
| 252 |
+
effect_NP_emp = (effect_tab.Label_level2 == 'Employees').sum()
|
| 253 |
+
if (cause_coun_NP > 0) and (effect_NP_emp > 0):
|
| 254 |
+
count_NP_emp = cause_coun_NP if cause_coun_NP >= effect_NP_emp else effect_NP_emp
|
| 255 |
+
else:
|
| 256 |
+
count_NP_emp = 0
|
| 257 |
+
effect_NP_soc = (effect_tab.Label_level2 == 'Society').sum()
|
| 258 |
+
if (cause_coun_NP > 0) and (effect_NP_soc > 0):
|
| 259 |
+
count_NP_soc = cause_coun_NP if cause_coun_NP >= effect_NP_soc else effect_NP_soc
|
| 260 |
+
else:
|
| 261 |
+
count_NP_soc = 0
|
| 262 |
+
|
| 263 |
+
cause_coun_inv = (cause_tab.Label_level2 == 'Investors').sum()
|
| 264 |
+
effect_coun_inv = (effect_tab.Label_level2 == 'Non-performance').sum()
|
| 265 |
+
if (cause_coun_inv > 0) and (effect_coun_inv > 0):
|
| 266 |
+
count_NP_inv = cause_coun_inv if cause_coun_inv >= effect_coun_inv else effect_coun_inv
|
| 267 |
+
else:
|
| 268 |
+
count_NP_inv = 0
|
| 269 |
+
|
| 270 |
+
effect_inv_inv = (effect_tab.Label_level2 == 'Investors').sum()
|
| 271 |
+
if (cause_coun_inv > 0) and (effect_inv_inv > 0):
|
| 272 |
+
count_inv_inv = cause_coun_inv if cause_coun_inv >= effect_inv_inv else effect_inv_inv
|
| 273 |
+
else:
|
| 274 |
+
count_inv_inv = 0
|
| 275 |
+
effect_inv_cus = (effect_tab.Label_level2 == 'Customers').sum()
|
| 276 |
+
if (cause_coun_inv > 0) and (effect_inv_cus > 0):
|
| 277 |
+
count_inv_cus = cause_coun_inv if cause_coun_inv >= effect_inv_cus else effect_inv_cus
|
| 278 |
+
else:
|
| 279 |
+
count_inv_cus = 0
|
| 280 |
+
effect_inv_emp = (effect_tab.Label_level2 == 'Employees').sum()
|
| 281 |
+
if (cause_coun_inv > 0) and (effect_inv_emp > 0):
|
| 282 |
+
count_inv_emp = cause_coun_inv if cause_coun_inv >= effect_inv_emp else effect_inv_emp
|
| 283 |
+
else:
|
| 284 |
+
count_inv_emp = 0
|
| 285 |
+
|
| 286 |
+
effect_inv_soc = (effect_tab.Label_level2 == 'Society').sum()
|
| 287 |
+
if (cause_coun_inv > 0) and (effect_inv_soc > 0):
|
| 288 |
+
count_inv_soc = cause_coun_inv if cause_coun_inv >= effect_inv_soc else effect_inv_soc
|
| 289 |
+
else:
|
| 290 |
+
count_inv_soc = 0
|
| 291 |
+
|
| 292 |
+
cause_coun_cus = (cause_tab.Label_level2 == 'Customers').sum()
|
| 293 |
+
effect_coun_cus = (effect_tab.Label_level2 == 'Non-performance').sum()
|
| 294 |
+
if (cause_coun_cus > 0) and (effect_coun_cus > 0):
|
| 295 |
+
count_NP_cus = cause_coun_cus if cause_coun_cus >= effect_coun_cus else effect_coun_cus
|
| 296 |
+
else:
|
| 297 |
+
count_NP_cus = 0
|
| 298 |
+
|
| 299 |
+
effect_cus_inv = (effect_tab.Label_level2 == 'Investors').sum()
|
| 300 |
+
if (cause_coun_cus > 0) and (effect_cus_inv > 0):
|
| 301 |
+
count_cus_inv = cause_coun_cus if cause_coun_cus >= effect_cus_inv else effect_cus_inv
|
| 302 |
+
else:
|
| 303 |
+
count_cus_inv = 0
|
| 304 |
+
|
| 305 |
+
effect_cus_cus = (effect_tab.Label_level2 == 'Customers').sum()
|
| 306 |
+
if (cause_coun_cus > 0) and (effect_cus_cus > 0):
|
| 307 |
+
count_cus_cus = cause_coun_cus if cause_coun_cus >= effect_cus_cus else effect_cus_cus
|
| 308 |
+
else:
|
| 309 |
+
count_cus_cus = 0
|
| 310 |
+
|
| 311 |
+
effect_cus_emp = (effect_tab.Label_level2 == 'Employees').sum()
|
| 312 |
+
if (cause_coun_cus > 0) and (effect_cus_emp > 0):
|
| 313 |
+
count_cus_emp = cause_coun_cus if cause_coun_cus >= effect_cus_emp else effect_cus_emp
|
| 314 |
+
else:
|
| 315 |
+
count_cus_emp = 0
|
| 316 |
+
|
| 317 |
+
effect_cus_soc = (effect_tab.Label_level2 == 'Society').sum()
|
| 318 |
+
if (cause_coun_cus > 0) and (effect_cus_soc > 0):
|
| 319 |
+
count_cus_soc = cause_coun_cus if cause_coun_cus >= effect_cus_soc else effect_cus_soc
|
| 320 |
+
else:
|
| 321 |
+
count_cus_soc = 0
|
| 322 |
+
|
| 323 |
+
cause_coun_emp = (cause_tab.Label_level2 == 'Employees').sum()
|
| 324 |
+
effect_coun_emp = (effect_tab.Label_level2 == 'Non-performance').sum()
|
| 325 |
+
if (cause_coun_emp > 0) and (effect_coun_emp > 0):
|
| 326 |
+
count_NP_emp = cause_coun_emp if cause_coun_emp >= effect_coun_emp else effect_coun_emp
|
| 327 |
+
else:
|
| 328 |
+
count_NP_emp = 0
|
| 329 |
+
|
| 330 |
+
effect_emp_inv = (effect_tab.Label_level2 == 'Investors').sum()
|
| 331 |
+
if (cause_coun_emp > 0) and (effect_emp_inv > 0):
|
| 332 |
+
count_emp_inv = cause_coun_emp if cause_coun_emp >= effect_emp_inv else effect_emp_inv
|
| 333 |
+
else:
|
| 334 |
+
count_emp_inv = 0
|
| 335 |
+
|
| 336 |
+
effect_emp_cus = (effect_tab.Label_level2 == 'Customers').sum()
|
| 337 |
+
if (cause_coun_emp > 0) and (effect_emp_cus > 0):
|
| 338 |
+
count_emp_cus = cause_coun_emp if cause_coun_emp >= effect_emp_cus else effect_emp_cus
|
| 339 |
+
else:
|
| 340 |
+
count_emp_cus = 0
|
| 341 |
+
|
| 342 |
+
effect_emp_emp = (effect_tab.Label_level2 == 'Employees').sum()
|
| 343 |
+
if (cause_coun_emp > 0) and (effect_emp_emp > 0):
|
| 344 |
+
count_emp_emp = cause_coun_emp if cause_coun_emp >= effect_emp_emp else effect_emp_emp
|
| 345 |
+
else:
|
| 346 |
+
count_emp_emp = 0
|
| 347 |
+
|
| 348 |
+
effect_emp_soc = (effect_tab.Label_level2 == 'Society').sum()
|
| 349 |
+
if (cause_coun_emp > 0) and (effect_emp_soc > 0):
|
| 350 |
+
count_emp_soc = cause_coun_emp if cause_coun_emp >= effect_emp_soc else effect_emp_soc
|
| 351 |
+
else:
|
| 352 |
+
count_emp_soc = 0
|
| 353 |
+
|
| 354 |
+
cause_coun_soc = (cause_tab.Label_level2 == 'Society').sum()
|
| 355 |
+
effect_coun_soc = (effect_tab.Label_level2 == 'Non-performance').sum()
|
| 356 |
+
if (cause_coun_soc > 0) and (effect_coun_soc > 0):
|
| 357 |
+
count_NP_soc = cause_coun_soc if cause_coun_soc >= effect_coun_soc else effect_coun_soc
|
| 358 |
+
else:
|
| 359 |
+
count_NP_soc = 0
|
| 360 |
+
|
| 361 |
+
effect_soc_inv = (effect_tab.Label_level2 == 'Investors').sum()
|
| 362 |
+
if (cause_coun_soc > 0) and (effect_soc_inv > 0):
|
| 363 |
+
count_soc_inv = cause_coun_soc if cause_coun_soc >= effect_soc_inv else effect_soc_inv
|
| 364 |
+
else:
|
| 365 |
+
count_soc_inv = 0
|
| 366 |
+
|
| 367 |
+
effect_soc_cus = (effect_tab.Label_level2 == 'Customers').sum()
|
| 368 |
+
if (cause_coun_soc > 0) and (effect_soc_cus > 0):
|
| 369 |
+
count_soc_cus = cause_coun_soc if cause_coun_soc >= effect_soc_cus else effect_soc_cus
|
| 370 |
+
else:
|
| 371 |
+
count_soc_cus = 0
|
| 372 |
+
|
| 373 |
+
effect_soc_emp = (effect_tab.Label_level2 == 'Employees').sum()
|
| 374 |
+
if (cause_coun_soc > 0) and (effect_soc_emp > 0):
|
| 375 |
+
count_soc_emp = cause_coun_soc if cause_coun_soc >= effect_soc_emp else effect_soc_emp
|
| 376 |
+
else:
|
| 377 |
+
count_soc_emp = 0
|
| 378 |
+
|
| 379 |
+
effect_soc_soc = (effect_tab.Label_level2 == 'Society').sum()
|
| 380 |
+
if (cause_coun_soc > 0) and (effect_soc_soc > 0):
|
| 381 |
+
count_soc_soc = cause_coun_soc if cause_coun_soc >= effect_soc_soc else effect_soc_soc
|
| 382 |
+
else:
|
| 383 |
+
count_soc_soc = 0
|
| 384 |
+
|
| 385 |
+
count_NP_NP = count_NP_NP + count_NP
|
| 386 |
+
count_NP_investor = count_NP_investor + count_NP_inv
|
| 387 |
+
count_NP_customer = count_NP_customer + count_NP_cus
|
| 388 |
+
count_NP_employees = count_NP_employees + count_NP_emp
|
| 389 |
+
count_NP_society = count_NP_society + count_NP_soc
|
| 390 |
+
|
| 391 |
+
count_inv_np = count_inv_np + count_NP_inv
|
| 392 |
+
count_inv_investor = count_inv_investor + count_inv_inv
|
| 393 |
+
count_inv_customer = count_inv_customer + count_inv_cus
|
| 394 |
+
count_inv_employee = count_inv_employee + count_inv_emp
|
| 395 |
+
count_inv_society = count_inv_society + count_inv_soc
|
| 396 |
+
|
| 397 |
+
count_cus_np = count_cus_np + count_NP_cus
|
| 398 |
+
count_cus_investor = count_cus_investor + count_cus_inv
|
| 399 |
+
count_cus_customer = count_cus_customer + count_cus_cus
|
| 400 |
+
count_cus_employee = count_cus_employee + count_cus_emp
|
| 401 |
+
count_cus_society = count_cus_society + count_cus_soc
|
| 402 |
+
|
| 403 |
+
count_emp_np = count_emp_np + count_NP_emp
|
| 404 |
+
count_emp_investor = count_emp_investor + count_emp_inv
|
| 405 |
+
count_emp_customer = count_emp_customer + count_emp_cus
|
| 406 |
+
count_emp_employee = count_emp_employee + count_emp_emp
|
| 407 |
+
count_emp_society = count_emp_society + count_emp_soc
|
| 408 |
+
|
| 409 |
+
count_soc_np = count_soc_np + count_NP_soc
|
| 410 |
+
count_soc_investor = count_soc_investor + count_soc_inv
|
| 411 |
+
count_soc_customer = count_soc_customer + count_soc_cus
|
| 412 |
+
count_soc_employee = count_soc_employee + count_soc_emp
|
| 413 |
+
count_soc_society = count_soc_society + count_soc_soc
|
| 414 |
+
|
| 415 |
+
df_tab = pd.DataFrame(columns = ['Non-performance', 'Investors', 'Customers', 'Employees', 'Society'],index=['Non-performance', 'Investors', 'Customers', 'Employees', 'Society'], dtype=object)
|
| 416 |
+
|
| 417 |
+
df_tab.loc['Non-performance'] = [count_NP_NP, count_NP_investor, count_NP_customer, count_NP_employees, count_NP_society]
|
| 418 |
+
df_tab.loc['Investors'] = [count_inv_np, count_inv_investor, count_inv_customer, count_inv_employee, count_inv_society]
|
| 419 |
+
df_tab.loc['Customers'] = [count_cus_np, count_cus_investor, count_cus_customer, count_cus_employee, count_cus_society]
|
| 420 |
+
df_tab.loc['Employees'] = [count_emp_np, count_emp_investor, count_emp_customer, count_emp_employee, count_emp_society]
|
| 421 |
+
df_tab.loc['Society'] = [count_soc_np, count_soc_investor, count_soc_customer, count_soc_employee, count_soc_society]
|
| 422 |
+
|
| 423 |
+
|
| 424 |
+
# df_tab = pd.DataFrame({
|
| 425 |
+
# 'Non-performance': [count_NP_NP, count_NP_investor, count_NP_customer, count_NP_employees, count_NP_society],
|
| 426 |
+
# 'Investors': [count_inv_np, count_inv_investor, count_inv_customer, count_inv_employee, count_inv_society],
|
| 427 |
+
# 'Customers': [count_cus_np, count_cus_investor, count_cus_customer, count_cus_employee, count_cus_society],
|
| 428 |
+
# 'Employees': [count_emp_np, count_emp_investor, count_emp_customer, count_emp_employee, count_emp_society],
|
| 429 |
+
# 'Society': [count_soc_np, count_soc_investor, count_soc_customer, count_soc_employee, count_soc_society]},
|
| 430 |
+
# index=['Non-performance', 'Investors', 'Customers', 'Employees', 'Society'])
|
| 431 |
+
|
| 432 |
+
df_tab.to_csv('final_data.csv')
|
| 433 |
+
|
| 434 |
+
df = pd.read_csv('final_data.csv', index_col=0)
|
| 435 |
+
|
| 436 |
+
# Convert to JSON format
|
| 437 |
+
json_data = []
|
| 438 |
+
for row in df.index:
|
| 439 |
+
for col in df.columns:
|
| 440 |
+
json_data.append({
|
| 441 |
+
'source': row,
|
| 442 |
+
'target': col,
|
| 443 |
+
'value': int(df.loc[row, col])
|
| 444 |
+
})
|
| 445 |
+
|
| 446 |
+
# Write JSON to file
|
| 447 |
+
with open('smalljson.json', 'w') as f:
|
| 448 |
+
json.dump(json_data, f)
|
| 449 |
+
|
| 450 |
+
csv_file = "predictions.csv"
|
| 451 |
+
json_file = "ch.json"
|
| 452 |
+
|
| 453 |
+
# Open the CSV file and read the data
|
| 454 |
+
with open(csv_file, "r") as f:
|
| 455 |
+
csv_data = csv.DictReader(f)
|
| 456 |
+
|
| 457 |
+
# Convert the CSV data to a list of dictionaries
|
| 458 |
+
data_list = []
|
| 459 |
+
for row in csv_data:
|
| 460 |
+
data_list.append(dict(row))
|
| 461 |
+
|
| 462 |
+
# Convert the list of dictionaries to JSON
|
| 463 |
+
json_data = json.dumps(data_list)
|
| 464 |
+
|
| 465 |
+
# Write the JSON data to a file
|
| 466 |
+
with open(json_file, "w") as f:
|
| 467 |
+
f.write(json_data)
|
| 468 |
+
|
| 469 |
+
def convert_df(df):
|
| 470 |
+
|
| 471 |
+
#IMPORTANT: Cache the conversion to prevent computation on every rerun
|
| 472 |
+
|
| 473 |
+
return df.to_csv().encode('utf-8')
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
|
| 477 |
+
csv1 = convert_df(df_final.astype(str))
|
| 478 |
+
csv2 = convert_df(df_tab.astype(str))
|
| 479 |
+
|
| 480 |
+
with st.container():
|
| 481 |
+
st.download_button(label="Download the detailed result table",data=csv1,file_name='results.csv',mime='text/csv')
|
| 482 |
+
st.download_button(label="Download the result table",data=csv2,file_name='final_data.csv',mime='text/csv')
|
| 483 |
+
|
| 484 |
+
# # LINK TO THE CSS FILE
|
| 485 |
+
# def tree_css(file_name):
|
| 486 |
+
# with open('/Users/seetha/Downloads/tree.css')as f:
|
| 487 |
+
# st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html = True)
|
| 488 |
+
#
|
| 489 |
+
# def div_css(file_name):
|
| 490 |
+
# with open('/Users/seetha/Downloads/div.css')as f:
|
| 491 |
+
# st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html = True)
|
| 492 |
+
#
|
| 493 |
+
# def side_css(file_name):
|
| 494 |
+
# with open('/Users/seetha/Downloads/side.css')as f:
|
| 495 |
+
# st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html = True)
|
| 496 |
+
#
|
| 497 |
+
# tree_css('tree.css')
|
| 498 |
+
# div_css('div.css')
|
| 499 |
+
# side_css('side.css')
|
| 500 |
+
|
| 501 |
+
STREAMLIT_STATIC_PATH = pathlib.Path(st.__path__[0]) / 'static'
|
| 502 |
+
CSS_PATH = (STREAMLIT_STATIC_PATH / "css1")
|
| 503 |
+
if not CSS_PATH.is_dir():
|
| 504 |
+
CSS_PATH.mkdir()
|
| 505 |
+
|
| 506 |
+
css_file = CSS_PATH / "tree.css"
|
| 507 |
+
css_file1 = CSS_PATH / "div.css"
|
| 508 |
+
css_file2 = CSS_PATH / "side.css"
|
| 509 |
+
jso_file = CSS_PATH / "smalljson.json"
|
| 510 |
+
if not css_file.exists():
|
| 511 |
+
shutil.copy("tree.css", css_file)
|
| 512 |
+
shutil.copy("div.css", css_file1)
|
| 513 |
+
shutil.copy("side.css", css_file2)
|
| 514 |
+
shutil.copy("smalljson.json", jso_file)
|
| 515 |
+
|
| 516 |
+
HtmlFile = open("index.html", 'r', encoding='utf-8')
|
| 517 |
+
source_code = HtmlFile.read()
|
| 518 |
+
#print(source_code)
|
| 519 |
+
components.html(source_code)
|
| 520 |
+
# # Define your javascript
|
| 521 |
+
# my_js = """
|
| 522 |
+
# alert("Hello World");
|
| 523 |
+
# """
|
| 524 |
+
|
| 525 |
+
# Wrapt the javascript as html code
|
| 526 |
+
#my_html = f"<script>{my_js}</script>"
|
| 527 |
+
|
| 528 |
+
|
| 529 |
+
# with st.container():
|
| 530 |
+
# # Execute your app
|
| 531 |
+
# st.title("Visualization example")
|
| 532 |
+
# # components.html(source_code)
|
| 533 |
+
# #html(my_html)
|
| 534 |
+
# #webbrowser.open('https://webpages.charlotte.edu/ltotapal/')
|
| 535 |
+
# # embed streamlit docs in a streamlit app
|
| 536 |
+
# #components.iframe("https://webpages.charlotte.edu/ltotapal/")
|
| 537 |
+
# st.markdown('<a href="https://webpages.charlotte.edu/ltotapal/" target="_self">Text to Knowledge graph link</a>', unsafe_allow_html=True)
|
| 538 |
+
|
| 539 |
+
|
| 540 |
+
|
| 541 |
+
|
| 542 |
+
|
| 543 |
+
if __name__ == '__main__':
|
| 544 |
+
main()
|