Spaces:
Build error
Build error
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
import logging
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from zipfile import ZipFile
|
| 7 |
+
from typing import Any, Dict,List
|
| 8 |
+
from transformers import pipeline
|
| 9 |
+
|
| 10 |
+
class Image_classification:
|
| 11 |
+
def __init__(self):
|
| 12 |
+
pass
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def unzip_image_data(self) -> str:
|
| 16 |
+
"""
|
| 17 |
+
Unzips an image dataset into a specified directory.
|
| 18 |
+
|
| 19 |
+
Returns:
|
| 20 |
+
str: The path to the directory containing the extracted image files.
|
| 21 |
+
"""
|
| 22 |
+
try:
|
| 23 |
+
with ZipFile("image_dataset.zip","r") as extract:
|
| 24 |
+
|
| 25 |
+
directory_path=str("dataset")
|
| 26 |
+
os.mkdir(directory_path)
|
| 27 |
+
extract.extractall(f"{directory_path}")
|
| 28 |
+
return f"{directory_path}"
|
| 29 |
+
|
| 30 |
+
except Exception as e:
|
| 31 |
+
logging.error(f"An error occurred during extraction: {e}")
|
| 32 |
+
return ""
|
| 33 |
+
|
| 34 |
+
def example_images(self) -> List[str]:
|
| 35 |
+
"""
|
| 36 |
+
Unzips the image dataset and generates a list of paths to the individual image files and use image for showing example
|
| 37 |
+
|
| 38 |
+
Returns:
|
| 39 |
+
List[str]: A list of file paths to each image in the dataset.
|
| 40 |
+
"""
|
| 41 |
+
try:
|
| 42 |
+
image_dataset_folder = self.unzip_image_data()
|
| 43 |
+
image_extensions = ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff', '.webp']
|
| 44 |
+
image_count = len([name for name in os.listdir(image_dataset_folder) if os.path.isfile(os.path.join(image_dataset_folder, name)) and os.path.splitext(name)[1].lower() in image_extensions])
|
| 45 |
+
example=[]
|
| 46 |
+
for i in range(image_count):
|
| 47 |
+
for name in os.listdir(image_dataset_folder):
|
| 48 |
+
path=(os.path.join(os.path.dirname(image_dataset_folder),os.path.join(image_dataset_folder,name)))
|
| 49 |
+
example.append(path)
|
| 50 |
+
return example
|
| 51 |
+
|
| 52 |
+
except Exception as e:
|
| 53 |
+
logging.error(f"An error occurred in example images: {e}")
|
| 54 |
+
return ""
|
| 55 |
+
|
| 56 |
+
def classify(self, image: Image.Image, model: Any) -> Dict[str, float]:
|
| 57 |
+
"""
|
| 58 |
+
Classifies an image using a specified model.
|
| 59 |
+
|
| 60 |
+
Args:
|
| 61 |
+
image (Image.Image): The image to classify.
|
| 62 |
+
model (Any): The model used for classification.
|
| 63 |
+
|
| 64 |
+
Returns:
|
| 65 |
+
Dict[str, float]: A dictionary of classification labels and their corresponding scores.
|
| 66 |
+
"""
|
| 67 |
+
try:
|
| 68 |
+
|
| 69 |
+
classifier = pipeline("image-classification", model=model)
|
| 70 |
+
result= classifier(image)
|
| 71 |
+
return result
|
| 72 |
+
except Exception as e:
|
| 73 |
+
logging.error(f"An error occurred during image classification: {e}")
|
| 74 |
+
raise
|
| 75 |
+
|
| 76 |
+
def format_the_result(self, image: Image.Image, model: Any) -> Dict[str, float]:
|
| 77 |
+
"""
|
| 78 |
+
Formats the classification result by retaining the highest score for each label.
|
| 79 |
+
|
| 80 |
+
Args:
|
| 81 |
+
image (Image.Image): The image to classify.
|
| 82 |
+
model (Any): The model used for classification.
|
| 83 |
+
|
| 84 |
+
Returns:
|
| 85 |
+
Dict[str, float]: A dictionary with unique labels and the highest score for each label.
|
| 86 |
+
"""
|
| 87 |
+
try:
|
| 88 |
+
data=self.classify(image,model)
|
| 89 |
+
new_dict = {}
|
| 90 |
+
for item in data:
|
| 91 |
+
label = item['label']
|
| 92 |
+
score = item['score']
|
| 93 |
+
|
| 94 |
+
if label in new_dict:
|
| 95 |
+
if new_dict[label] < score:
|
| 96 |
+
new_dict[label] = score
|
| 97 |
+
else:
|
| 98 |
+
new_dict[label] = score
|
| 99 |
+
return new_dict
|
| 100 |
+
except Exception as e:
|
| 101 |
+
logging.error(f"An error occurred while formatting the results: {e}")
|
| 102 |
+
raise
|
| 103 |
+
|
| 104 |
+
def interface(self):
|
| 105 |
+
|
| 106 |
+
with gr.Blocks(css="""
|
| 107 |
+
|
| 108 |
+
.gradio-container {background: #314755;
|
| 109 |
+
background: -webkit-linear-gradient(to right, #26a0da, #314755);
|
| 110 |
+
background: linear-gradient(to right, #26a0da, #314755);}
|
| 111 |
+
.block svelte-90oupt padded{background:314755;
|
| 112 |
+
margin:0;
|
| 113 |
+
padding:0;}""") as demo:
|
| 114 |
+
|
| 115 |
+
gr.HTML("""
|
| 116 |
+
<center><h1 style="color:#fff">Image Classification</h1></center>""")
|
| 117 |
+
|
| 118 |
+
exam_img=self.example_images()
|
| 119 |
+
with gr.Row():
|
| 120 |
+
model = gr.Dropdown(["facebook/regnet-x-040","google/vit-large-patch16-384","microsoft/resnet-50",""],label="Choose a model")
|
| 121 |
+
with gr.Row():
|
| 122 |
+
image = gr.Image(type="filepath",sources="upload")
|
| 123 |
+
with gr.Column():
|
| 124 |
+
output=gr.Label()
|
| 125 |
+
with gr.Row():
|
| 126 |
+
button=gr.Button()
|
| 127 |
+
button.click(self.format_the_result,[image,model],output)
|
| 128 |
+
gr.Examples(
|
| 129 |
+
examples=exam_img,
|
| 130 |
+
inputs=[image],
|
| 131 |
+
outputs=output,
|
| 132 |
+
fn=self.format_the_result,
|
| 133 |
+
cache_examples=False,
|
| 134 |
+
)
|
| 135 |
+
demo.launch(debug=True)
|
| 136 |
+
|
| 137 |
+
if __name__=="__main__":
|
| 138 |
+
|
| 139 |
+
image_classification=Image_classification()
|
| 140 |
+
result=image_classification.interface()
|