Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import requests
|
| 5 |
+
import wikipedia
|
| 6 |
import gradio as gr
|
| 7 |
+
import torch
|
| 8 |
+
|
| 9 |
+
from functools import lru_cache
|
| 10 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 11 |
+
from typing import List
|
| 12 |
+
|
| 13 |
+
from transformers import (
|
| 14 |
+
SeamlessM4TTokenizer,
|
| 15 |
+
SeamlessM4TProcessor,
|
| 16 |
+
SeamlessM4TForTextToText,
|
| 17 |
+
pipeline as hf_pipeline
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
# ββ 1) Model setup ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 21 |
+
|
| 22 |
+
MODEL = "facebook/hf-seamless-m4t-medium"
|
| 23 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 24 |
+
|
| 25 |
+
tokenizer = SeamlessM4TTokenizer.from_pretrained(MODEL, use_fast=False)
|
| 26 |
+
processor = SeamlessM4TProcessor.from_pretrained(MODEL, tokenizer=tokenizer)
|
| 27 |
+
|
| 28 |
+
m4t_model = SeamlessM4TForTextToText.from_pretrained(MODEL).to(device)
|
| 29 |
+
if device == "cuda":
|
| 30 |
+
m4t_model = m4t_model.half() # FP16 for faster inference on GPU
|
| 31 |
+
m4t_model.eval()
|
| 32 |
+
|
| 33 |
+
def translate_m4t(text: str, src_iso3: str, tgt_iso3: str, auto_detect=False) -> str:
|
| 34 |
+
src = None if auto_detect else src_iso3
|
| 35 |
+
inputs = processor(text=text, src_lang=src, return_tensors="pt").to(device)
|
| 36 |
+
tokens = m4t_model.generate(**inputs, tgt_lang=tgt_iso3)
|
| 37 |
+
return processor.decode(tokens[0].tolist(), skip_special_tokens=True)
|
| 38 |
+
|
| 39 |
+
def translate_m4t_batch(
|
| 40 |
+
texts: List[str], src_iso3: str, tgt_iso3: str, auto_detect=False
|
| 41 |
+
) -> List[str]:
|
| 42 |
+
src = None if auto_detect else src_iso3
|
| 43 |
+
inputs = processor(
|
| 44 |
+
text=texts, src_lang=src, return_tensors="pt", padding=True
|
| 45 |
+
).to(device)
|
| 46 |
+
tokens = m4t_model.generate(
|
| 47 |
+
**inputs,
|
| 48 |
+
tgt_lang=tgt_iso3,
|
| 49 |
+
max_new_tokens=60,
|
| 50 |
+
num_beams=1
|
| 51 |
+
)
|
| 52 |
+
return processor.batch_decode(tokens, skip_special_tokens=True)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
# ββ 2) NER pipeline (updated for deprecation) ββββββββββββββββββββββββββββββββ
|
| 56 |
+
|
| 57 |
+
ner = hf_pipeline(
|
| 58 |
+
"ner",
|
| 59 |
+
model="dslim/bert-base-NER-uncased",
|
| 60 |
+
aggregation_strategy="simple"
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
# ββ 3) CACHING helpers ββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 65 |
+
|
| 66 |
+
@lru_cache(maxsize=256)
|
| 67 |
+
def geocode_cache(place: str):
|
| 68 |
+
r = requests.get(
|
| 69 |
+
"https://nominatim.openstreetmap.org/search",
|
| 70 |
+
params={"q": place, "format": "json", "limit": 1},
|
| 71 |
+
headers={"User-Agent": "iVoiceContext/1.0"}
|
| 72 |
+
).json()
|
| 73 |
+
if not r:
|
| 74 |
+
return None
|
| 75 |
+
return {"lat": float(r[0]["lat"]), "lon": float(r[0]["lon"])}
|
| 76 |
+
|
| 77 |
+
@lru_cache(maxsize=256)
|
| 78 |
+
def fetch_osm_cache(lat: float, lon: float, osm_filter: str, limit: int = 5):
|
| 79 |
+
payload = f"""
|
| 80 |
+
[out:json][timeout:25];
|
| 81 |
+
(
|
| 82 |
+
node{osm_filter}(around:1000,{lat},{lon});
|
| 83 |
+
way{osm_filter}(around:1000,{lat},{lon});
|
| 84 |
+
);
|
| 85 |
+
out center {limit};
|
| 86 |
+
"""
|
| 87 |
+
resp = requests.post(
|
| 88 |
+
"https://overpass-api.de/api/interpreter",
|
| 89 |
+
data={"data": payload}
|
| 90 |
+
)
|
| 91 |
+
elems = resp.json().get("elements", [])
|
| 92 |
+
return [
|
| 93 |
+
{"name": e["tags"]["name"]}
|
| 94 |
+
for e in elems
|
| 95 |
+
if e.get("tags", {}).get("name")
|
| 96 |
+
]
|
| 97 |
+
|
| 98 |
+
@lru_cache(maxsize=256)
|
| 99 |
+
def wiki_summary_cache(name: str) -> str:
|
| 100 |
+
try:
|
| 101 |
+
return wikipedia.summary(name, sentences=2)
|
| 102 |
+
except:
|
| 103 |
+
return "No summary available."
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
# ββ 4) Per-entity worker ββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 107 |
+
|
| 108 |
+
def process_entity(ent) -> dict:
|
| 109 |
+
w = ent["word"]
|
| 110 |
+
lbl = ent["entity_group"]
|
| 111 |
+
|
| 112 |
+
if lbl == "LOC":
|
| 113 |
+
geo = geocode_cache(w)
|
| 114 |
+
if not geo:
|
| 115 |
+
return {
|
| 116 |
+
"text": w,
|
| 117 |
+
"label": lbl,
|
| 118 |
+
"type": "location",
|
| 119 |
+
"error": "could not geocode"
|
| 120 |
+
}
|
| 121 |
+
|
| 122 |
+
restaurants = fetch_osm_cache(geo["lat"], geo["lon"], '["amenity"="restaurant"]')
|
| 123 |
+
attractions = fetch_osm_cache(geo["lat"], geo["lon"], '["tourism"="attraction"]')
|
| 124 |
+
|
| 125 |
+
return {
|
| 126 |
+
"text": w,
|
| 127 |
+
"label": lbl,
|
| 128 |
+
"type": "location",
|
| 129 |
+
"geo": geo,
|
| 130 |
+
"restaurants": restaurants,
|
| 131 |
+
"attractions": attractions
|
| 132 |
+
}
|
| 133 |
+
|
| 134 |
+
# PERSON / ORG / MISC β Wikipedia
|
| 135 |
+
summary = wiki_summary_cache(w)
|
| 136 |
+
return {"text": w, "label": lbl, "type": "wiki", "summary": summary}
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
# ββ 5) Main function ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 140 |
+
|
| 141 |
+
def get_context(
|
| 142 |
+
text: str,
|
| 143 |
+
source_lang: str,
|
| 144 |
+
output_lang: str,
|
| 145 |
+
auto_detect: bool
|
| 146 |
+
):
|
| 147 |
+
# a) Ensure English for NER
|
| 148 |
+
if auto_detect or source_lang != "eng":
|
| 149 |
+
en = translate_m4t(text, source_lang, "eng", auto_detect=auto_detect)
|
| 150 |
+
else:
|
| 151 |
+
en = text
|
| 152 |
+
|
| 153 |
+
# b) Run NER + dedupe
|
| 154 |
+
ner_out = ner(en)
|
| 155 |
+
seen = set()
|
| 156 |
+
unique_ents = []
|
| 157 |
+
for ent in ner_out:
|
| 158 |
+
w = ent["word"]
|
| 159 |
+
if w in seen:
|
| 160 |
+
continue
|
| 161 |
+
seen.add(w)
|
| 162 |
+
unique_ents.append(ent)
|
| 163 |
+
|
| 164 |
+
# c) Parallel I/O
|
| 165 |
+
entities = []
|
| 166 |
+
with ThreadPoolExecutor(max_workers=8) as exe:
|
| 167 |
+
futures = [exe.submit(process_entity, ent) for ent in unique_ents]
|
| 168 |
+
for fut in futures:
|
| 169 |
+
entities.append(fut.result())
|
| 170 |
+
|
| 171 |
+
# d) Batch-translate non-English fields
|
| 172 |
+
if source_lang != "eng":
|
| 173 |
+
to_translate = []
|
| 174 |
+
translations_info = []
|
| 175 |
+
|
| 176 |
+
for i, e in enumerate(entities):
|
| 177 |
+
if e["type"] == "wiki":
|
| 178 |
+
translations_info.append(("summary", i))
|
| 179 |
+
to_translate.append(e["summary"])
|
| 180 |
+
elif e["type"] == "location":
|
| 181 |
+
for j, r in enumerate(e["restaurants"]):
|
| 182 |
+
translations_info.append(("restaurant", i, j))
|
| 183 |
+
to_translate.append(r["name"])
|
| 184 |
+
for j, a in enumerate(e["attractions"]):
|
| 185 |
+
translations_info.append(("attraction", i, j))
|
| 186 |
+
to_translate.append(a["name"])
|
| 187 |
+
|
| 188 |
+
# β
Translate back to source language, not target
|
| 189 |
+
translated = translate_m4t_batch(to_translate, "eng", source_lang)
|
| 190 |
+
|
| 191 |
+
for txt, info in zip(translated, translations_info):
|
| 192 |
+
kind = info[0]
|
| 193 |
+
if kind == "summary":
|
| 194 |
+
_, ei = info
|
| 195 |
+
entities[ei]["summary"] = txt
|
| 196 |
+
elif kind == "restaurant":
|
| 197 |
+
_, ei, ri = info
|
| 198 |
+
entities[ei]["restaurants"][ri]["name"] = txt
|
| 199 |
+
elif kind == "attraction":
|
| 200 |
+
_, ei, ai = info
|
| 201 |
+
entities[ei]["attractions"][ai]["name"] = txt
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
return {"entities": entities}
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
# ββ 6) Gradio interface βββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 208 |
|
| 209 |
+
iface = gr.Interface(
|
| 210 |
+
fn=get_context,
|
| 211 |
+
inputs=[
|
| 212 |
+
gr.Textbox(lines=3, placeholder="Enter textβ¦"),
|
| 213 |
+
gr.Textbox(label="Source Language (ISO 639-3)"),
|
| 214 |
+
gr.Textbox(label="Target Language (ISO 639-3)"),
|
| 215 |
+
gr.Checkbox(label="Auto-detect source language")
|
| 216 |
+
],
|
| 217 |
+
outputs="json",
|
| 218 |
+
title="iVoice Context-Aware",
|
| 219 |
+
description="Returns only the detected entities and their related info."
|
| 220 |
+
).queue() # β removed unsupported kwargs
|
| 221 |
|
| 222 |
+
if __name__ == "__main__":
|
| 223 |
+
iface.launch(
|
| 224 |
+
server_name="0.0.0.0",
|
| 225 |
+
server_port=int(os.environ.get("PORT", 7860)),
|
| 226 |
+
share=True
|
| 227 |
+
)
|