Spaces:
Runtime error
Runtime error
| import cv2 | |
| import torch | |
| import gradio as gr | |
| import numpy as np | |
| from PIL import Image | |
| import time | |
| midas = torch.hub.load("intel-isl/MiDaS", "MiDaS") | |
| use_large_model = True | |
| if use_large_model: | |
| midas = torch.hub.load("intel-isl/MiDaS", "MiDaS") | |
| else: | |
| midas = torch.hub.load("intel-isl/MiDaS", "MiDaS_small") | |
| device = "cpu" | |
| midas.to(device) | |
| midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms") | |
| if use_large_model: | |
| transform = midas_transforms.default_transform | |
| else: | |
| transform = midas_transforms.small_transform | |
| def depth(img): | |
| original_image = img | |
| cv_image = np.array(img) | |
| img = cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB) | |
| input_batch = transform(img).to(device) | |
| with torch.no_grad(): | |
| prediction = midas(input_batch) | |
| prediction = torch.nn.functional.interpolate( | |
| prediction.unsqueeze(1), | |
| size=img.shape[:2], | |
| mode="bicubic", | |
| align_corners=False, | |
| ).squeeze() | |
| output = prediction.cpu().numpy() | |
| formatted = (output * 255 / np.max(output)).astype('uint8') | |
| img = Image.fromarray(formatted) | |
| # create new image with with original_image and img side by side | |
| new_im = Image.new('RGB', (original_image.width * 2, original_image.height)) | |
| new_im.paste(original_image, (0,0)) | |
| new_im.paste(img, (original_image.width,0)) | |
| # save the image to a file: (removed for hosting on HF) | |
| #new_im.save(f'RGBDs/{int(time.time())}_RGBD.png') | |
| return new_im | |
| inputs = gr.inputs.Image(type='pil', label="Original Image") | |
| outputs = gr.outputs.Image(type="pil",label="Output Image") | |
| title = "RGB to RGBD for Looking Glass (using MiDaS)" | |
| description = "Takes an RGB image and creates the depth + combines to the RGB image. Depth is predicted by MiDaS. This is a demo of the Looking Glass. For more information, visit https://lookingglassfactory.com" | |
| article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1907.01341v3'>Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer</a> | <a href='https://github.com/intel-isl/MiDaS'>Github Repo</a></p>" | |
| gr.Interface(depth, inputs, outputs, title=title, description=description, article=article).launch() |