Init leaderboard
Browse files- Dockerfile +12 -0
- README.md +5 -6
- app.py +288 -0
- requirements.txt +6 -0
- results/Bgym-GPT-3.5/README.md +1 -0
- results/Bgym-GPT-3.5/config.json +4 -0
- results/Bgym-GPT-3.5/miniwob.json +16 -0
- results/Bgym-GPT-3.5/results.json +53 -0
- results/Bgym-GPT-3.5/webarena.json +16 -0
- results/Bgym-GPT-3.5/workarena++-l2.json +16 -0
- results/Bgym-GPT-3.5/workarena++-l3.json +16 -0
- results/Bgym-GPT-3.5/workarena-l1.json +44 -0
- results/Bgym-GPT-4o-V/README.md +1 -0
- results/Bgym-GPT-4o-V/config.json +4 -0
- results/Bgym-GPT-4o-V/miniwob.json +16 -0
- results/Bgym-GPT-4o-V/results.json +52 -0
- results/Bgym-GPT-4o-V/webarena.json +16 -0
- results/Bgym-GPT-4o-V/workarena++-l2.json +16 -0
- results/Bgym-GPT-4o-V/workarena++-l3.json +16 -0
- results/Bgym-GPT-4o-V/workarena-l1.json +16 -0
- results/Bgym-GPT-4o/README.md +1 -0
- results/Bgym-GPT-4o/config.json +4 -0
- results/Bgym-GPT-4o/miniwob.json +16 -0
- results/Bgym-GPT-4o/results.json +52 -0
- results/Bgym-GPT-4o/webarena.json +16 -0
- results/Bgym-GPT-4o/workarena++-l2.json +16 -0
- results/Bgym-GPT-4o/workarena++-l3.json +16 -0
- results/Bgym-GPT-4o/workarena-l1.json +16 -0
- results/Bgym-Llama-3-70b/README.md +1 -0
- results/Bgym-Llama-3-70b/config.json +4 -0
- results/Bgym-Llama-3-70b/miniwob.json +16 -0
- results/Bgym-Llama-3-70b/results.json +52 -0
- results/Bgym-Llama-3-70b/webarena.json +16 -0
- results/Bgym-Llama-3-70b/workarena++-l2.json +16 -0
- results/Bgym-Llama-3-70b/workarena++-l3.json +16 -0
- results/Bgym-Llama-3-70b/workarena-l1.json +58 -0
- results/Bgym-Mixtral-8x22b/README.md +1 -0
- results/Bgym-Mixtral-8x22b/config.json +4 -0
- results/Bgym-Mixtral-8x22b/miniwob.json +16 -0
- results/Bgym-Mixtral-8x22b/results.json +52 -0
- results/Bgym-Mixtral-8x22b/webarena.json +16 -0
- results/Bgym-Mixtral-8x22b/workarena++-l2.json +16 -0
- results/Bgym-Mixtral-8x22b/workarena++-l3.json +16 -0
- results/Bgym-Mixtral-8x22b/workarena-l1.json +44 -0
Dockerfile
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.9
|
| 2 |
+
|
| 3 |
+
WORKDIR /code
|
| 4 |
+
|
| 5 |
+
COPY ./requirements.txt /code/requirements.txt
|
| 6 |
+
COPY ./app.py /code/app.py
|
| 7 |
+
COPY ./results.json /code/results.json
|
| 8 |
+
COPY ./results /code/results
|
| 9 |
+
|
| 10 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
| 11 |
+
|
| 12 |
+
CMD ["streamlit", "run", "/code/app.py", "--server.address", "0.0.0.0", "--server.port", "7860"]
|
README.md
CHANGED
|
@@ -1,12 +1,11 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: docker
|
| 7 |
pinned: false
|
| 8 |
-
license:
|
| 9 |
-
short_description: Leaderboard to track the progress of agents on web tasks
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: WebAgent Leaderboard
|
| 3 |
+
emoji: 🐠
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: green
|
| 6 |
sdk: docker
|
| 7 |
pinned: false
|
| 8 |
+
license: mit
|
|
|
|
| 9 |
---
|
| 10 |
|
| 11 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import re
|
| 3 |
+
import os
|
| 4 |
+
import streamlit as st
|
| 5 |
+
import requests
|
| 6 |
+
import pandas as pd
|
| 7 |
+
from io import StringIO
|
| 8 |
+
import plotly.graph_objs as go
|
| 9 |
+
from huggingface_hub import HfApi
|
| 10 |
+
from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError
|
| 11 |
+
import streamlit.components.v1 as components
|
| 12 |
+
|
| 13 |
+
# BENCHMARKS = ["WorkArena-L1", "WorkArena++-L2", "WorkArena++-L3", "MiniWoB", "WebArena"]
|
| 14 |
+
BENCHMARKS = ["WebArena", "WorkArena-L1", "WorkArena++-L2", "WorkArena++-L3", "MiniWoB",]
|
| 15 |
+
|
| 16 |
+
def create_html_table_main(df, benchmarks):
|
| 17 |
+
col1, col2 = st.columns([2,6])
|
| 18 |
+
with col1:
|
| 19 |
+
sort_column = st.selectbox("Sort by", df.columns.tolist())
|
| 20 |
+
with col2:
|
| 21 |
+
sort_order = st.radio("Order", ["Ascending", "Descending"], horizontal=True)
|
| 22 |
+
|
| 23 |
+
# Sort dataframe
|
| 24 |
+
if sort_order == "Ascending":
|
| 25 |
+
df = df.sort_values(by=sort_column)
|
| 26 |
+
else:
|
| 27 |
+
df = df.sort_values(by=sort_column, ascending=False)
|
| 28 |
+
|
| 29 |
+
# Create HTML table without JavaScript sorting
|
| 30 |
+
html = '''
|
| 31 |
+
<style>
|
| 32 |
+
table {
|
| 33 |
+
width: 100%;
|
| 34 |
+
border-collapse: collapse;
|
| 35 |
+
}
|
| 36 |
+
th, td {
|
| 37 |
+
border: 1px solid #ddd;
|
| 38 |
+
padding: 8px;
|
| 39 |
+
text-align: center;
|
| 40 |
+
}
|
| 41 |
+
th {
|
| 42 |
+
font-weight: bold;
|
| 43 |
+
}
|
| 44 |
+
.table-container {
|
| 45 |
+
padding-bottom: 20px;
|
| 46 |
+
}
|
| 47 |
+
</style>
|
| 48 |
+
'''
|
| 49 |
+
html += '<div class="table-container">'
|
| 50 |
+
html += '<table>'
|
| 51 |
+
html += '<thead><tr>'
|
| 52 |
+
for column in df.columns:
|
| 53 |
+
html += f'<th>{column}</th>'
|
| 54 |
+
html += '</tr></thead>'
|
| 55 |
+
html += '<tbody>'
|
| 56 |
+
for _, row in df.iterrows():
|
| 57 |
+
html += '<tr>'
|
| 58 |
+
for col in df.columns:
|
| 59 |
+
html += f'<td>{row[col]}</td>'
|
| 60 |
+
html += '</tr>'
|
| 61 |
+
html += '</tbody></table>'
|
| 62 |
+
html += '</div>'
|
| 63 |
+
return html
|
| 64 |
+
|
| 65 |
+
def create_html_table_benchmark(df, benchmarks):
|
| 66 |
+
# Create HTML table without JavaScript sorting
|
| 67 |
+
html = '''
|
| 68 |
+
<style>
|
| 69 |
+
table {
|
| 70 |
+
width: 100%;
|
| 71 |
+
border-collapse: collapse;
|
| 72 |
+
}
|
| 73 |
+
th, td {
|
| 74 |
+
border: 1px solid #ddd;
|
| 75 |
+
padding: 8px;
|
| 76 |
+
text-align: center;
|
| 77 |
+
}
|
| 78 |
+
th {
|
| 79 |
+
font-weight: bold;
|
| 80 |
+
}
|
| 81 |
+
.table-container {
|
| 82 |
+
padding-bottom: 20px;
|
| 83 |
+
}
|
| 84 |
+
</style>
|
| 85 |
+
'''
|
| 86 |
+
html += '<div class="table-container">'
|
| 87 |
+
html += '<table>'
|
| 88 |
+
html += '<thead><tr>'
|
| 89 |
+
for column in df.columns:
|
| 90 |
+
if column != "Reproduced_all":
|
| 91 |
+
html += f'<th>{column}</th>'
|
| 92 |
+
html += '</tr></thead>'
|
| 93 |
+
html += '<tbody>'
|
| 94 |
+
for _, row in df.iterrows():
|
| 95 |
+
html += '<tr>'
|
| 96 |
+
for column in df.columns:
|
| 97 |
+
if column == "Reproduced":
|
| 98 |
+
if row[column] == "-":
|
| 99 |
+
html += f'<td>{row[column]}</td>'
|
| 100 |
+
else:
|
| 101 |
+
html += f'<td><details><summary>{row[column]}</summary>{"<br>".join(map(str, row["Reproduced_all"]))}</details></td>'
|
| 102 |
+
elif column == "Reproduced_all":
|
| 103 |
+
continue
|
| 104 |
+
else:
|
| 105 |
+
html += f'<td>{row[column]}</td>'
|
| 106 |
+
html += '</tr>'
|
| 107 |
+
html += '</tbody></table>'
|
| 108 |
+
html += '</div>'
|
| 109 |
+
return html
|
| 110 |
+
|
| 111 |
+
def check_sanity(agent):
|
| 112 |
+
for benchmark in BENCHMARKS:
|
| 113 |
+
file_path = f"results/{agent}/{benchmark.lower()}.json"
|
| 114 |
+
if not os.path.exists(file_path):
|
| 115 |
+
continue
|
| 116 |
+
original_count = 0
|
| 117 |
+
with open(file_path) as f:
|
| 118 |
+
results = json.load(f)
|
| 119 |
+
for result in results:
|
| 120 |
+
if not all(key in result for key in ["agent_name", "benchmark", "original_or_reproduced", "score", "std_err", "benchmark_specific", "benchmark_tuned", "followed_evaluation_protocol", "reproducible", "comments", "study_id", "date_time"]):
|
| 121 |
+
return False
|
| 122 |
+
if result["agent_name"] != agent:
|
| 123 |
+
return False
|
| 124 |
+
if result["benchmark"] != benchmark:
|
| 125 |
+
return False
|
| 126 |
+
if result["original_or_reproduced"] == "Original":
|
| 127 |
+
original_count += 1
|
| 128 |
+
if original_count != 1:
|
| 129 |
+
return False
|
| 130 |
+
return True
|
| 131 |
+
|
| 132 |
+
def main():
|
| 133 |
+
st.set_page_config(page_title="WebAgent Leaderboard", layout="wide")
|
| 134 |
+
|
| 135 |
+
all_agents = os.listdir("results")
|
| 136 |
+
all_results = {}
|
| 137 |
+
for agent in all_agents:
|
| 138 |
+
if not check_sanity(agent):
|
| 139 |
+
st.error(f"Results for {agent} are not in the correct format.")
|
| 140 |
+
continue
|
| 141 |
+
agent_results = []
|
| 142 |
+
for benchmark in BENCHMARKS:
|
| 143 |
+
with open(f"results/{agent}/{benchmark.lower()}.json") as f:
|
| 144 |
+
agent_results.extend(json.load(f))
|
| 145 |
+
all_results[agent] = agent_results
|
| 146 |
+
|
| 147 |
+
st.title("🏆 WebAgent Leaderboard")
|
| 148 |
+
st.markdown("Leaderboard to evaluate LLMs, VLMs, and agents on web navigation tasks.")
|
| 149 |
+
# content = create_yall()
|
| 150 |
+
# tab1, tab2, tab3, tab4 = st.tabs(["🏆 WebAgent Leaderboard", "WorkArena++-L2 Leaderboard", "WorkArena++-L3 Leaderboard", "📝 About"])
|
| 151 |
+
tabs = st.tabs(["🏆 WebAgent Leaderboard",] + BENCHMARKS + ["📝 About"])
|
| 152 |
+
|
| 153 |
+
with tabs[0]:
|
| 154 |
+
# Leaderboard tab
|
| 155 |
+
def get_leaderboard_dict(results):
|
| 156 |
+
leaderboard_dict = []
|
| 157 |
+
for key, values in results.items():
|
| 158 |
+
result_dict = {"Agent": key}
|
| 159 |
+
for benchmark in BENCHMARKS:
|
| 160 |
+
if any(value["benchmark"] == benchmark and value["original_or_reproduced"] == "Original" for value in values):
|
| 161 |
+
result_dict[benchmark] = [value["score"] for value in values if value["benchmark"] == benchmark and value["original_or_reproduced"] == "Original"][0]
|
| 162 |
+
else:
|
| 163 |
+
result_dict[benchmark] = "-"
|
| 164 |
+
leaderboard_dict.append(result_dict)
|
| 165 |
+
return leaderboard_dict
|
| 166 |
+
leaderboard_dict = get_leaderboard_dict(all_results)
|
| 167 |
+
# print (leaderboard_dict)
|
| 168 |
+
full_df = pd.DataFrame.from_dict(leaderboard_dict)
|
| 169 |
+
|
| 170 |
+
df = pd.DataFrame(columns=full_df.columns)
|
| 171 |
+
dfs_to_concat = []
|
| 172 |
+
dfs_to_concat.append(full_df)
|
| 173 |
+
|
| 174 |
+
# Concatenate the DataFrames
|
| 175 |
+
if dfs_to_concat:
|
| 176 |
+
df = pd.concat(dfs_to_concat, ignore_index=True)
|
| 177 |
+
|
| 178 |
+
# df['Average'] = sum(df[column] for column in BENCHMARKS)/len(BENCHMARKS)
|
| 179 |
+
# df['Average'] = df['Average'].round(2)
|
| 180 |
+
# Sort values
|
| 181 |
+
df = df.sort_values(by='WebArena', ascending=False)
|
| 182 |
+
|
| 183 |
+
# Add a search bar
|
| 184 |
+
search_query = st.text_input("Search agents", "", key="search_main")
|
| 185 |
+
|
| 186 |
+
# Filter the DataFrame based on the search query
|
| 187 |
+
if search_query:
|
| 188 |
+
df = df[df['Agent'].str.contains(search_query, case=False)]
|
| 189 |
+
|
| 190 |
+
# Display the filtered DataFrame or the entire leaderboard
|
| 191 |
+
|
| 192 |
+
def make_hyperlink(agent_name):
|
| 193 |
+
url = f"https://huggingface.co/spaces/meghsn/WebAgent-Leaderboard/blob/main/results/{agent_name}/README.md"
|
| 194 |
+
return f'<a href="{url}" target="_blank">{agent_name}</a>'
|
| 195 |
+
df['Agent'] = df['Agent'].apply(make_hyperlink)
|
| 196 |
+
# st.dataframe(
|
| 197 |
+
# df[['Agent'] + BENCHMARKS],
|
| 198 |
+
# use_container_width=True,
|
| 199 |
+
# column_config={benchmark: {'alignment': 'center'} for benchmark in BENCHMARKS},
|
| 200 |
+
# hide_index=True,
|
| 201 |
+
# # height=int(len(df) * 36.2),
|
| 202 |
+
# )
|
| 203 |
+
# st.markdown(df.to_html(escape=False, index=False), unsafe_allow_html=True)
|
| 204 |
+
html_table = create_html_table_main(df, BENCHMARKS)
|
| 205 |
+
# print (html_table)
|
| 206 |
+
st.markdown(html_table, unsafe_allow_html=True)
|
| 207 |
+
# components.html(html_table, height=600, scrolling=True)
|
| 208 |
+
|
| 209 |
+
if st.button("Export to CSV", key="export_main"):
|
| 210 |
+
# Export the DataFrame to CSV
|
| 211 |
+
csv_data = df.to_csv(index=False)
|
| 212 |
+
|
| 213 |
+
# Create a link to download the CSV file
|
| 214 |
+
st.download_button(
|
| 215 |
+
label="Download CSV",
|
| 216 |
+
data=csv_data,
|
| 217 |
+
file_name="leaderboard.csv",
|
| 218 |
+
key="download-csv",
|
| 219 |
+
help="Click to download the CSV file",
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
with tabs[-1]:
|
| 223 |
+
st.markdown('''
|
| 224 |
+
### Leaderboard to evaluate LLMs, VLMs, and agents on web navigation tasks.
|
| 225 |
+
''')
|
| 226 |
+
for i, benchmark in enumerate(BENCHMARKS, start=1):
|
| 227 |
+
with tabs[i]:
|
| 228 |
+
def get_benchmark_dict(results, benchmark):
|
| 229 |
+
benchmark_dict = []
|
| 230 |
+
for key, values in results.items():
|
| 231 |
+
result_dict = {"Agent": key}
|
| 232 |
+
flag = 0
|
| 233 |
+
for value in values:
|
| 234 |
+
if value["benchmark"] == benchmark and value["original_or_reproduced"] == "Original":
|
| 235 |
+
result_dict["Score"] = value["score"]
|
| 236 |
+
result_dict["Benchmark Specific"] = value["benchmark_specific"]
|
| 237 |
+
result_dict["Benchmark Tuned"] = value["benchmark_tuned"]
|
| 238 |
+
result_dict["Followed Evaluation Protocol"] = value["followed_evaluation_protocol"]
|
| 239 |
+
result_dict["Reproducible"] = value["reproducible"]
|
| 240 |
+
result_dict["Comments"] = value["comments"]
|
| 241 |
+
result_dict["Study ID"] = value["study_id"]
|
| 242 |
+
result_dict["Date"] = value["date_time"]
|
| 243 |
+
result_dict["Reproduced"] = []
|
| 244 |
+
result_dict["Reproduced_all"] = []
|
| 245 |
+
flag = 1
|
| 246 |
+
if not flag:
|
| 247 |
+
result_dict["Score"] = "-"
|
| 248 |
+
result_dict["Benchmark Specific"] = "-"
|
| 249 |
+
result_dict["Benchmark Tuned"] = "-"
|
| 250 |
+
result_dict["Followed Evaluation Protocol"] = "-"
|
| 251 |
+
result_dict["Reproducible"] = "-"
|
| 252 |
+
result_dict["Comments"] = "-"
|
| 253 |
+
result_dict["Study ID"] = "-"
|
| 254 |
+
result_dict["Date"] = "-"
|
| 255 |
+
result_dict["Reproduced"] = []
|
| 256 |
+
result_dict["Reproduced_all"] = []
|
| 257 |
+
if value["benchmark"] == benchmark and value["original_or_reproduced"] == "Reproduced":
|
| 258 |
+
result_dict["Reproduced"].append(value["score"])
|
| 259 |
+
result_dict["Reproduced_all"].append(", ".join([str(value["score"]), str(value["date_time"])]))
|
| 260 |
+
if result_dict["Reproduced"]:
|
| 261 |
+
result_dict["Reproduced"] = str(min(result_dict["Reproduced"])) + " - " + str(max(result_dict["Reproduced"]))
|
| 262 |
+
else:
|
| 263 |
+
result_dict["Reproduced"] = "-"
|
| 264 |
+
benchmark_dict.append(result_dict)
|
| 265 |
+
return benchmark_dict
|
| 266 |
+
benchmark_dict = get_benchmark_dict(all_results, benchmark=benchmark)
|
| 267 |
+
# print (leaderboard_dict)
|
| 268 |
+
full_df = pd.DataFrame.from_dict(benchmark_dict)
|
| 269 |
+
df_ = pd.DataFrame(columns=full_df.columns)
|
| 270 |
+
dfs_to_concat = []
|
| 271 |
+
dfs_to_concat.append(full_df)
|
| 272 |
+
|
| 273 |
+
# Concatenate the DataFrames
|
| 274 |
+
if dfs_to_concat:
|
| 275 |
+
df_ = pd.concat(dfs_to_concat, ignore_index=True)
|
| 276 |
+
# st.markdown(f"<h2 id='{benchmark.lower()}'>{benchmark}</h2>", unsafe_allow_html=True)
|
| 277 |
+
# st.dataframe(
|
| 278 |
+
# df_,
|
| 279 |
+
# use_container_width=True,
|
| 280 |
+
# column_config={benchmark: {'alignment': 'center'}},
|
| 281 |
+
# hide_index=True,
|
| 282 |
+
# )
|
| 283 |
+
html_table = create_html_table_benchmark(df_, BENCHMARKS)
|
| 284 |
+
st.markdown(html_table, unsafe_allow_html=True)
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
if __name__ == "__main__":
|
| 288 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit==1.23
|
| 2 |
+
pandas
|
| 3 |
+
requests
|
| 4 |
+
plotly
|
| 5 |
+
gistyc
|
| 6 |
+
huggingface_hub
|
results/Bgym-GPT-3.5/README.md
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
## GPT-3.5 model
|
results/Bgym-GPT-3.5/config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"agent_name": "GPT-3.5",
|
| 3 |
+
"backend_llm": "GPT-3.5"
|
| 4 |
+
}
|
results/Bgym-GPT-3.5/miniwob.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"agent_name": "Bgym-GPT-3.5",
|
| 4 |
+
"study_id": "study_id",
|
| 5 |
+
"date_time": "2021-01-01 12:00:00",
|
| 6 |
+
"benchmark": "MiniWoB",
|
| 7 |
+
"score": 43.4,
|
| 8 |
+
"std_err": 0.1,
|
| 9 |
+
"benchmark_specific": "No",
|
| 10 |
+
"benchmark_tuned": "No",
|
| 11 |
+
"followed_evaluation_protocol": "Yes",
|
| 12 |
+
"reproducible": "Yes",
|
| 13 |
+
"comments": "NA",
|
| 14 |
+
"original_or_reproduced": "Original"
|
| 15 |
+
}
|
| 16 |
+
]
|
results/Bgym-GPT-3.5/results.json
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"benchmark": "WorkArena-L1",
|
| 4 |
+
"score": 6.1,
|
| 5 |
+
"std_err": 0.3,
|
| 6 |
+
"benchmark_specific": "No",
|
| 7 |
+
"benchmark_tuned": "No",
|
| 8 |
+
"followed_evaluation_protocol": "Yes",
|
| 9 |
+
"reproducible": "Yes",
|
| 10 |
+
"reproduced": [["aug 2025", 0.65, 0.05, "study_id"]],
|
| 11 |
+
"comments": "NA"
|
| 12 |
+
},
|
| 13 |
+
{
|
| 14 |
+
"benchmark": "WorkArena++-L2",
|
| 15 |
+
"score": 0.0,
|
| 16 |
+
"std_err": 0.0,
|
| 17 |
+
"benchmark_specific": "No",
|
| 18 |
+
"benchmark_tuned": "No",
|
| 19 |
+
"followed_evaluation_protocol": "Yes",
|
| 20 |
+
"reproducible": "Yes",
|
| 21 |
+
"comments": "NA"
|
| 22 |
+
},
|
| 23 |
+
{
|
| 24 |
+
"benchmark": "WorkArena++-L3",
|
| 25 |
+
"score": 0.0,
|
| 26 |
+
"std_err": 0.0,
|
| 27 |
+
"benchmark_specific": "No",
|
| 28 |
+
"benchmark_tuned": "No",
|
| 29 |
+
"followed_evaluation_protocol": "Yes",
|
| 30 |
+
"reproducible": "Yes",
|
| 31 |
+
"comments": "NA"
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"benchmark": "MiniWoB",
|
| 35 |
+
"score": 43.4,
|
| 36 |
+
"std_err": 0.1,
|
| 37 |
+
"benchmark_specific": "No",
|
| 38 |
+
"benchmark_tuned": "No",
|
| 39 |
+
"followed_evaluation_protocol": "Yes",
|
| 40 |
+
"reproducible": "Yes",
|
| 41 |
+
"comments": "NA"
|
| 42 |
+
},
|
| 43 |
+
{
|
| 44 |
+
"benchmark": "WebArena",
|
| 45 |
+
"score": 6.7,
|
| 46 |
+
"std_err": 0.2,
|
| 47 |
+
"benchmark_specific": "No",
|
| 48 |
+
"benchmark_tuned": "No",
|
| 49 |
+
"followed_evaluation_protocol": "Yes",
|
| 50 |
+
"reproducible": "Yes",
|
| 51 |
+
"comments": "NA"
|
| 52 |
+
}
|
| 53 |
+
]
|
results/Bgym-GPT-3.5/webarena.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"agent_name": "Bgym-GPT-3.5",
|
| 4 |
+
"study_id": "study_id",
|
| 5 |
+
"date_time": "2021-01-01 12:00:00",
|
| 6 |
+
"benchmark": "WebArena",
|
| 7 |
+
"score": 6.7,
|
| 8 |
+
"std_err": 0.2,
|
| 9 |
+
"benchmark_specific": "No",
|
| 10 |
+
"benchmark_tuned": "No",
|
| 11 |
+
"followed_evaluation_protocol": "Yes",
|
| 12 |
+
"reproducible": "Yes",
|
| 13 |
+
"comments": "NA",
|
| 14 |
+
"original_or_reproduced": "Original"
|
| 15 |
+
}
|
| 16 |
+
]
|
results/Bgym-GPT-3.5/workarena++-l2.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"agent_name": "Bgym-GPT-3.5",
|
| 4 |
+
"study_id": "study_id",
|
| 5 |
+
"date_time": "2021-01-01 12:00:00",
|
| 6 |
+
"benchmark": "WorkArena++-L2",
|
| 7 |
+
"score": 0.0,
|
| 8 |
+
"std_err": 0.0,
|
| 9 |
+
"benchmark_specific": "No",
|
| 10 |
+
"benchmark_tuned": "No",
|
| 11 |
+
"followed_evaluation_protocol": "Yes",
|
| 12 |
+
"reproducible": "Yes",
|
| 13 |
+
"comments": "NA",
|
| 14 |
+
"original_or_reproduced": "Original"
|
| 15 |
+
}
|
| 16 |
+
]
|
results/Bgym-GPT-3.5/workarena++-l3.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"agent_name": "Bgym-GPT-3.5",
|
| 4 |
+
"study_id": "study_id",
|
| 5 |
+
"date_time": "2021-01-01 12:00:00",
|
| 6 |
+
"benchmark": "WorkArena++-L3",
|
| 7 |
+
"score": 0.0,
|
| 8 |
+
"std_err": 0.0,
|
| 9 |
+
"benchmark_specific": "No",
|
| 10 |
+
"benchmark_tuned": "No",
|
| 11 |
+
"followed_evaluation_protocol": "Yes",
|
| 12 |
+
"reproducible": "Yes",
|
| 13 |
+
"comments": "NA",
|
| 14 |
+
"original_or_reproduced": "Original"
|
| 15 |
+
}
|
| 16 |
+
]
|
results/Bgym-GPT-3.5/workarena-l1.json
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"agent_name": "Bgym-GPT-3.5",
|
| 4 |
+
"study_id": "study_id",
|
| 5 |
+
"date_time": "2021-01-01 12:00:00",
|
| 6 |
+
"benchmark": "WorkArena-L1",
|
| 7 |
+
"score": 6.1,
|
| 8 |
+
"std_err": 0.3,
|
| 9 |
+
"benchmark_specific": "No",
|
| 10 |
+
"benchmark_tuned": "No",
|
| 11 |
+
"followed_evaluation_protocol": "Yes",
|
| 12 |
+
"reproducible": "Yes",
|
| 13 |
+
"comments": "NA",
|
| 14 |
+
"original_or_reproduced": "Original"
|
| 15 |
+
},
|
| 16 |
+
{
|
| 17 |
+
"agent_name": "Bgym-GPT-3.5",
|
| 18 |
+
"study_id": "study_id",
|
| 19 |
+
"benchmark": "WorkArena-L1",
|
| 20 |
+
"score": 5.7,
|
| 21 |
+
"std_err": 0.3,
|
| 22 |
+
"benchmark_specific": "No",
|
| 23 |
+
"benchmark_tuned": "No",
|
| 24 |
+
"followed_evaluation_protocol": "Yes",
|
| 25 |
+
"reproducible": "Yes",
|
| 26 |
+
"comments": "NA",
|
| 27 |
+
"original_or_reproduced": "Reproduced",
|
| 28 |
+
"date_time": "2021-01-04 12:06:00"
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"benchmark": "WorkArena-L1",
|
| 32 |
+
"agent_name": "Bgym-GPT-3.5",
|
| 33 |
+
"study_id": "study_id",
|
| 34 |
+
"score": 5.1,
|
| 35 |
+
"std_err": 0.3,
|
| 36 |
+
"benchmark_specific": "No",
|
| 37 |
+
"benchmark_tuned": "No",
|
| 38 |
+
"followed_evaluation_protocol": "Yes",
|
| 39 |
+
"reproducible": "Yes",
|
| 40 |
+
"comments": "NA",
|
| 41 |
+
"original_or_reproduced": "Reproduced",
|
| 42 |
+
"date_time": "2021-01-04 12:06:00"
|
| 43 |
+
}
|
| 44 |
+
]
|
results/Bgym-GPT-4o-V/README.md
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
## GPT-4o-V model
|
results/Bgym-GPT-4o-V/config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"agent_name": "GPT-4o-V",
|
| 3 |
+
"backend_llm": "GPT-4o-V"
|
| 4 |
+
}
|
results/Bgym-GPT-4o-V/miniwob.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"agent_name": "Bgym-GPT-4o-V",
|
| 4 |
+
"study_id": "study_id",
|
| 5 |
+
"date_time": "2021-01-01 12:00:00",
|
| 6 |
+
"benchmark": "MiniWoB",
|
| 7 |
+
"score": 72.5,
|
| 8 |
+
"std_err": 0.5,
|
| 9 |
+
"benchmark_specific": "No",
|
| 10 |
+
"benchmark_tuned": "No",
|
| 11 |
+
"followed_evaluation_protocol": "Yes",
|
| 12 |
+
"reproducible": "Yes",
|
| 13 |
+
"comments": "NA",
|
| 14 |
+
"original_or_reproduced": "Original"
|
| 15 |
+
}
|
| 16 |
+
]
|
results/Bgym-GPT-4o-V/results.json
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"benchmark": "WorkArena-L1",
|
| 4 |
+
"score": 41.8,
|
| 5 |
+
"std_err": 0.4,
|
| 6 |
+
"benchmark_specific": "No",
|
| 7 |
+
"benchmark_tuned": "No",
|
| 8 |
+
"followed_evaluation_protocol": "Yes",
|
| 9 |
+
"reproducible": "Yes",
|
| 10 |
+
"comments": "NA"
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"benchmark": "WorkArena++-L2",
|
| 14 |
+
"score": 3.8,
|
| 15 |
+
"std_err": 0.6,
|
| 16 |
+
"benchmark_specific": "No",
|
| 17 |
+
"benchmark_tuned": "No",
|
| 18 |
+
"followed_evaluation_protocol": "Yes",
|
| 19 |
+
"reproducible": "Yes",
|
| 20 |
+
"comments": "NA"
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"benchmark": "WorkArena++-L3",
|
| 24 |
+
"score": 0.0,
|
| 25 |
+
"std_err": 0.0,
|
| 26 |
+
"benchmark_specific": "No",
|
| 27 |
+
"benchmark_tuned": "No",
|
| 28 |
+
"followed_evaluation_protocol": "Yes",
|
| 29 |
+
"reproducible": "Yes",
|
| 30 |
+
"comments": "NA"
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"benchmark": "MiniWoB",
|
| 34 |
+
"score": 72.5,
|
| 35 |
+
"std_err": 0.5,
|
| 36 |
+
"benchmark_specific": "No",
|
| 37 |
+
"benchmark_tuned": "No",
|
| 38 |
+
"followed_evaluation_protocol": "Yes",
|
| 39 |
+
"reproducible": "Yes",
|
| 40 |
+
"comments": "NA"
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"benchmark": "WebArena",
|
| 44 |
+
"score": 24.0,
|
| 45 |
+
"std_err": 0.4,
|
| 46 |
+
"benchmark_specific": "No",
|
| 47 |
+
"benchmark_tuned": "No",
|
| 48 |
+
"followed_evaluation_protocol": "Yes",
|
| 49 |
+
"reproducible": "Yes",
|
| 50 |
+
"comments": "NA"
|
| 51 |
+
}
|
| 52 |
+
]
|
results/Bgym-GPT-4o-V/webarena.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"agent_name": "Bgym-GPT-4o-V",
|
| 4 |
+
"study_id": "study_id",
|
| 5 |
+
"date_time": "2021-01-01 12:00:00",
|
| 6 |
+
"benchmark": "WebArena",
|
| 7 |
+
"score": 24.0,
|
| 8 |
+
"std_err": 0.4,
|
| 9 |
+
"benchmark_specific": "No",
|
| 10 |
+
"benchmark_tuned": "No",
|
| 11 |
+
"followed_evaluation_protocol": "Yes",
|
| 12 |
+
"reproducible": "Yes",
|
| 13 |
+
"comments": "NA",
|
| 14 |
+
"original_or_reproduced": "Original"
|
| 15 |
+
}
|
| 16 |
+
]
|
results/Bgym-GPT-4o-V/workarena++-l2.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"agent_name": "Bgym-GPT-4o-V",
|
| 4 |
+
"study_id": "study_id",
|
| 5 |
+
"date_time": "2021-01-01 12:00:00",
|
| 6 |
+
"benchmark": "WorkArena++-L2",
|
| 7 |
+
"score": 3.8,
|
| 8 |
+
"std_err": 0.6,
|
| 9 |
+
"benchmark_specific": "No",
|
| 10 |
+
"benchmark_tuned": "No",
|
| 11 |
+
"followed_evaluation_protocol": "Yes",
|
| 12 |
+
"reproducible": "Yes",
|
| 13 |
+
"comments": "NA",
|
| 14 |
+
"original_or_reproduced": "Original"
|
| 15 |
+
}
|
| 16 |
+
]
|
results/Bgym-GPT-4o-V/workarena++-l3.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"agent_name": "Bgym-GPT-4o-V",
|
| 4 |
+
"study_id": "study_id",
|
| 5 |
+
"date_time": "2021-01-01 12:00:00",
|
| 6 |
+
"benchmark": "WorkArena++-L3",
|
| 7 |
+
"score": 0.0,
|
| 8 |
+
"std_err": 0.0,
|
| 9 |
+
"benchmark_specific": "No",
|
| 10 |
+
"benchmark_tuned": "No",
|
| 11 |
+
"followed_evaluation_protocol": "Yes",
|
| 12 |
+
"reproducible": "Yes",
|
| 13 |
+
"comments": "NA",
|
| 14 |
+
"original_or_reproduced": "Original"
|
| 15 |
+
}
|
| 16 |
+
]
|
results/Bgym-GPT-4o-V/workarena-l1.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"agent_name": "Bgym-GPT-4o-V",
|
| 4 |
+
"study_id": "study_id",
|
| 5 |
+
"date_time": "2021-01-01 12:00:00",
|
| 6 |
+
"benchmark": "WorkArena-L1",
|
| 7 |
+
"score": 41.8,
|
| 8 |
+
"std_err": 0.4,
|
| 9 |
+
"benchmark_specific": "No",
|
| 10 |
+
"benchmark_tuned": "No",
|
| 11 |
+
"followed_evaluation_protocol": "Yes",
|
| 12 |
+
"reproducible": "Yes",
|
| 13 |
+
"comments": "NA",
|
| 14 |
+
"original_or_reproduced": "Original"
|
| 15 |
+
}
|
| 16 |
+
]
|
results/Bgym-GPT-4o/README.md
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
## GPT-4o model
|
results/Bgym-GPT-4o/config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"agent_name": "GPT-4o",
|
| 3 |
+
"backend_llm": "GPT-4o"
|
| 4 |
+
}
|
results/Bgym-GPT-4o/miniwob.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"agent_name": "Bgym-GPT-4o",
|
| 4 |
+
"study_id": "study_id",
|
| 5 |
+
"date_time": "2021-01-01 12:00:00",
|
| 6 |
+
"benchmark": "MiniWoB",
|
| 7 |
+
"score": 71.3,
|
| 8 |
+
"std_err": 0.5,
|
| 9 |
+
"benchmark_specific": "No",
|
| 10 |
+
"benchmark_tuned": "No",
|
| 11 |
+
"followed_evaluation_protocol": "Yes",
|
| 12 |
+
"reproducible": "Yes",
|
| 13 |
+
"comments": "NA",
|
| 14 |
+
"original_or_reproduced": "Original"
|
| 15 |
+
}
|
| 16 |
+
]
|
results/Bgym-GPT-4o/results.json
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"benchmark": "WorkArena-L1",
|
| 4 |
+
"score": 42.7,
|
| 5 |
+
"std_err": 0.4,
|
| 6 |
+
"benchmark_specific": "No",
|
| 7 |
+
"benchmark_tuned": "No",
|
| 8 |
+
"followed_evaluation_protocol": "Yes",
|
| 9 |
+
"reproducible": "Yes",
|
| 10 |
+
"comments": "NA"
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"benchmark": "WorkArena++-L2",
|
| 14 |
+
"score": 3.0,
|
| 15 |
+
"std_err": 0.6,
|
| 16 |
+
"benchmark_specific": "No",
|
| 17 |
+
"benchmark_tuned": "No",
|
| 18 |
+
"followed_evaluation_protocol": "Yes",
|
| 19 |
+
"reproducible": "Yes",
|
| 20 |
+
"comments": "NA"
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"benchmark": "WorkArena++-L3",
|
| 24 |
+
"score": 0.0,
|
| 25 |
+
"std_err": 0.0,
|
| 26 |
+
"benchmark_specific": "No",
|
| 27 |
+
"benchmark_tuned": "No",
|
| 28 |
+
"followed_evaluation_protocol": "Yes",
|
| 29 |
+
"reproducible": "Yes",
|
| 30 |
+
"comments": "NA"
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"benchmark": "MiniWoB",
|
| 34 |
+
"score": 71.3,
|
| 35 |
+
"std_err": 0.5,
|
| 36 |
+
"benchmark_specific": "No",
|
| 37 |
+
"benchmark_tuned": "No",
|
| 38 |
+
"followed_evaluation_protocol": "Yes",
|
| 39 |
+
"reproducible": "Yes",
|
| 40 |
+
"comments": "NA"
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"benchmark": "WebArena",
|
| 44 |
+
"score": 23.5,
|
| 45 |
+
"std_err": 0.4,
|
| 46 |
+
"benchmark_specific": "No",
|
| 47 |
+
"benchmark_tuned": "No",
|
| 48 |
+
"followed_evaluation_protocol": "Yes",
|
| 49 |
+
"reproducible": "Yes",
|
| 50 |
+
"comments": "NA"
|
| 51 |
+
}
|
| 52 |
+
]
|
results/Bgym-GPT-4o/webarena.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"agent_name": "Bgym-GPT-4o",
|
| 4 |
+
"study_id": "study_id",
|
| 5 |
+
"date_time": "2021-01-01 12:00:00",
|
| 6 |
+
"benchmark": "WebArena",
|
| 7 |
+
"score": 23.5,
|
| 8 |
+
"std_err": 0.4,
|
| 9 |
+
"benchmark_specific": "No",
|
| 10 |
+
"benchmark_tuned": "No",
|
| 11 |
+
"followed_evaluation_protocol": "Yes",
|
| 12 |
+
"reproducible": "Yes",
|
| 13 |
+
"comments": "NA",
|
| 14 |
+
"original_or_reproduced": "Original"
|
| 15 |
+
}
|
| 16 |
+
]
|
results/Bgym-GPT-4o/workarena++-l2.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"agent_name": "Bgym-GPT-4o",
|
| 4 |
+
"study_id": "study_id",
|
| 5 |
+
"date_time": "2021-01-01 12:00:00",
|
| 6 |
+
"benchmark": "WorkArena++-L2",
|
| 7 |
+
"score": 3.0,
|
| 8 |
+
"std_err": 0.6,
|
| 9 |
+
"benchmark_specific": "No",
|
| 10 |
+
"benchmark_tuned": "No",
|
| 11 |
+
"followed_evaluation_protocol": "Yes",
|
| 12 |
+
"reproducible": "Yes",
|
| 13 |
+
"comments": "NA",
|
| 14 |
+
"original_or_reproduced": "Original"
|
| 15 |
+
}
|
| 16 |
+
]
|
results/Bgym-GPT-4o/workarena++-l3.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"agent_name": "Bgym-GPT-4o",
|
| 4 |
+
"study_id": "study_id",
|
| 5 |
+
"date_time": "2021-01-01 12:00:00",
|
| 6 |
+
"benchmark": "WorkArena++-L3",
|
| 7 |
+
"score": 0.0,
|
| 8 |
+
"std_err": 0.0,
|
| 9 |
+
"benchmark_specific": "No",
|
| 10 |
+
"benchmark_tuned": "No",
|
| 11 |
+
"followed_evaluation_protocol": "Yes",
|
| 12 |
+
"reproducible": "Yes",
|
| 13 |
+
"comments": "NA",
|
| 14 |
+
"original_or_reproduced": "Original"
|
| 15 |
+
}
|
| 16 |
+
]
|
results/Bgym-GPT-4o/workarena-l1.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"agent_name": "Bgym-GPT-4o",
|
| 4 |
+
"study_id": "study_id",
|
| 5 |
+
"date_time": "2021-01-01 12:00:00",
|
| 6 |
+
"benchmark": "WorkArena-L1",
|
| 7 |
+
"score": 42.7,
|
| 8 |
+
"std_err": 0.4,
|
| 9 |
+
"benchmark_specific": "No",
|
| 10 |
+
"benchmark_tuned": "No",
|
| 11 |
+
"followed_evaluation_protocol": "Yes",
|
| 12 |
+
"reproducible": "Yes",
|
| 13 |
+
"comments": "NA",
|
| 14 |
+
"original_or_reproduced": "Original"
|
| 15 |
+
}
|
| 16 |
+
]
|
results/Bgym-Llama-3-70b/README.md
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
### Llama-3-70B
|
results/Bgym-Llama-3-70b/config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"agent_name": "Llama-3-70B",
|
| 3 |
+
"backend_llm": "Llama-3-70B"
|
| 4 |
+
}
|
results/Bgym-Llama-3-70b/miniwob.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"agent_name": "Bgym-Llama-3-70b",
|
| 4 |
+
"study_id": "study_id",
|
| 5 |
+
"date_time": "2021-01-01 12:00:00",
|
| 6 |
+
"benchmark": "MiniWoB",
|
| 7 |
+
"score": 68.2,
|
| 8 |
+
"std_err": 0.7,
|
| 9 |
+
"benchmark_specific": "No",
|
| 10 |
+
"benchmark_tuned": "No",
|
| 11 |
+
"followed_evaluation_protocol": "Yes",
|
| 12 |
+
"reproducible": "Yes",
|
| 13 |
+
"comments": "NA",
|
| 14 |
+
"original_or_reproduced": "Original"
|
| 15 |
+
}
|
| 16 |
+
]
|
results/Bgym-Llama-3-70b/results.json
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"benchmark": "WorkArena-L1",
|
| 4 |
+
"score": 17.9,
|
| 5 |
+
"std_err": 0.6,
|
| 6 |
+
"benchmark_specific": "No",
|
| 7 |
+
"benchmark_tuned": "No",
|
| 8 |
+
"followed_evaluation_protocol": "Yes",
|
| 9 |
+
"reproducible": "Yes",
|
| 10 |
+
"comments": "NA"
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"benchmark": "WorkArena++-L2",
|
| 14 |
+
"score": 0.0,
|
| 15 |
+
"std_err": 0.0,
|
| 16 |
+
"benchmark_specific": "No",
|
| 17 |
+
"benchmark_tuned": "No",
|
| 18 |
+
"followed_evaluation_protocol": "Yes",
|
| 19 |
+
"reproducible": "Yes",
|
| 20 |
+
"comments": "NA"
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"benchmark": "WorkArena++-L3",
|
| 24 |
+
"score": 0.0,
|
| 25 |
+
"std_err": 0.0,
|
| 26 |
+
"benchmark_specific": "No",
|
| 27 |
+
"benchmark_tuned": "No",
|
| 28 |
+
"followed_evaluation_protocol": "Yes",
|
| 29 |
+
"reproducible": "Yes",
|
| 30 |
+
"comments": "NA"
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"benchmark": "MiniWoB",
|
| 34 |
+
"score": 68.2,
|
| 35 |
+
"std_err": 0.7,
|
| 36 |
+
"benchmark_specific": "No",
|
| 37 |
+
"benchmark_tuned": "No",
|
| 38 |
+
"followed_evaluation_protocol": "Yes",
|
| 39 |
+
"reproducible": "Yes",
|
| 40 |
+
"comments": "NA"
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"benchmark": "WebArena",
|
| 44 |
+
"score": 11.0,
|
| 45 |
+
"std_err": 0.3,
|
| 46 |
+
"benchmark_specific": "No",
|
| 47 |
+
"benchmark_tuned": "No",
|
| 48 |
+
"followed_evaluation_protocol": "Yes",
|
| 49 |
+
"reproducible": "Yes",
|
| 50 |
+
"comments": "NA"
|
| 51 |
+
}
|
| 52 |
+
]
|
results/Bgym-Llama-3-70b/webarena.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"agent_name": "Bgym-Llama-3-70b",
|
| 4 |
+
"study_id": "study_id",
|
| 5 |
+
"date_time": "2021-01-01 12:00:00",
|
| 6 |
+
"benchmark": "WebArena",
|
| 7 |
+
"score": 11.0,
|
| 8 |
+
"std_err": 0.3,
|
| 9 |
+
"benchmark_specific": "No",
|
| 10 |
+
"benchmark_tuned": "No",
|
| 11 |
+
"followed_evaluation_protocol": "Yes",
|
| 12 |
+
"reproducible": "Yes",
|
| 13 |
+
"comments": "NA",
|
| 14 |
+
"original_or_reproduced": "Original"
|
| 15 |
+
}
|
| 16 |
+
]
|
results/Bgym-Llama-3-70b/workarena++-l2.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"agent_name": "Bgym-Llama-3-70b",
|
| 4 |
+
"study_id": "study_id",
|
| 5 |
+
"date_time": "2021-01-01 12:00:00",
|
| 6 |
+
"benchmark": "WorkArena++-L2",
|
| 7 |
+
"score": 0.0,
|
| 8 |
+
"std_err": 0.0,
|
| 9 |
+
"benchmark_specific": "No",
|
| 10 |
+
"benchmark_tuned": "No",
|
| 11 |
+
"followed_evaluation_protocol": "Yes",
|
| 12 |
+
"reproducible": "Yes",
|
| 13 |
+
"comments": "NA",
|
| 14 |
+
"original_or_reproduced": "Original"
|
| 15 |
+
}
|
| 16 |
+
]
|
results/Bgym-Llama-3-70b/workarena++-l3.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"agent_name": "Bgym-Llama-3-70b",
|
| 4 |
+
"study_id": "study_id",
|
| 5 |
+
"date_time": "2021-01-01 12:00:00",
|
| 6 |
+
"benchmark": "WorkArena++-L3",
|
| 7 |
+
"score": 0.0,
|
| 8 |
+
"std_err": 0.0,
|
| 9 |
+
"benchmark_specific": "No",
|
| 10 |
+
"benchmark_tuned": "No",
|
| 11 |
+
"followed_evaluation_protocol": "Yes",
|
| 12 |
+
"reproducible": "Yes",
|
| 13 |
+
"comments": "NA",
|
| 14 |
+
"original_or_reproduced": "Original"
|
| 15 |
+
}
|
| 16 |
+
]
|
results/Bgym-Llama-3-70b/workarena-l1.json
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"agent_name": "Bgym-Llama-3-70b",
|
| 4 |
+
"study_id": "study_id",
|
| 5 |
+
"benchmark": "WorkArena-L1",
|
| 6 |
+
"score": 17.9,
|
| 7 |
+
"std_err": 0.6,
|
| 8 |
+
"benchmark_specific": "No",
|
| 9 |
+
"benchmark_tuned": "No",
|
| 10 |
+
"followed_evaluation_protocol": "Yes",
|
| 11 |
+
"reproducible": "Yes",
|
| 12 |
+
"comments": "NA",
|
| 13 |
+
"original_or_reproduced": "Original",
|
| 14 |
+
"date_time": "2021-01-01 12:00:00"
|
| 15 |
+
},
|
| 16 |
+
{
|
| 17 |
+
"agent_name": "Bgym-Llama-3-70b",
|
| 18 |
+
"study_id": "study_id",
|
| 19 |
+
"benchmark": "WorkArena-L1",
|
| 20 |
+
"score": 15.9,
|
| 21 |
+
"std_err": 0.6,
|
| 22 |
+
"benchmark_specific": "No",
|
| 23 |
+
"benchmark_tuned": "No",
|
| 24 |
+
"followed_evaluation_protocol": "Yes",
|
| 25 |
+
"reproducible": "Yes",
|
| 26 |
+
"comments": "NA",
|
| 27 |
+
"original_or_reproduced": "Reproduced",
|
| 28 |
+
"date_time": "2021-01-04 12:06:00"
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"agent_name": "Bgym-Llama-3-70b",
|
| 32 |
+
"study_id": "study_id",
|
| 33 |
+
"benchmark": "WorkArena-L1",
|
| 34 |
+
"score": 19.9,
|
| 35 |
+
"std_err": 0.6,
|
| 36 |
+
"benchmark_specific": "No",
|
| 37 |
+
"benchmark_tuned": "No",
|
| 38 |
+
"followed_evaluation_protocol": "Yes",
|
| 39 |
+
"reproducible": "Yes",
|
| 40 |
+
"comments": "NA",
|
| 41 |
+
"original_or_reproduced": "Reproduced",
|
| 42 |
+
"date_time": "2021-01-05 2:07:00"
|
| 43 |
+
},
|
| 44 |
+
{
|
| 45 |
+
"agent_name": "Bgym-Llama-3-70b",
|
| 46 |
+
"study_id": "study_id",
|
| 47 |
+
"benchmark": "WorkArena-L1",
|
| 48 |
+
"score": 17.9,
|
| 49 |
+
"std_err": 0.6,
|
| 50 |
+
"benchmark_specific": "No",
|
| 51 |
+
"benchmark_tuned": "No",
|
| 52 |
+
"followed_evaluation_protocol": "Yes",
|
| 53 |
+
"reproducible": "Yes",
|
| 54 |
+
"comments": "NA",
|
| 55 |
+
"original_or_reproduced": "Reproduced",
|
| 56 |
+
"date_time": "2021-01-12 12:00:00"
|
| 57 |
+
}
|
| 58 |
+
]
|
results/Bgym-Mixtral-8x22b/README.md
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
## Mixtral 8x22B
|
results/Bgym-Mixtral-8x22b/config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"agent_name": "Mixtral-8x22B",
|
| 3 |
+
"backend_llm": "Mixtral-8x22B"
|
| 4 |
+
}
|
results/Bgym-Mixtral-8x22b/miniwob.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"agent_name": "Bgym-Mixtral-8x22b",
|
| 4 |
+
"study_id": "study_id",
|
| 5 |
+
"date_time": "2021-01-01 12:00:00",
|
| 6 |
+
"benchmark": "MiniWoB",
|
| 7 |
+
"score": 62.4,
|
| 8 |
+
"std_err": 0.5,
|
| 9 |
+
"benchmark_specific": "No",
|
| 10 |
+
"benchmark_tuned": "No",
|
| 11 |
+
"followed_evaluation_protocol": "Yes",
|
| 12 |
+
"reproducible": "Yes",
|
| 13 |
+
"comments": "NA",
|
| 14 |
+
"original_or_reproduced": "Original"
|
| 15 |
+
}
|
| 16 |
+
]
|
results/Bgym-Mixtral-8x22b/results.json
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"benchmark": "WorkArena-L1",
|
| 4 |
+
"score": 12.4,
|
| 5 |
+
"std_err": 0.7,
|
| 6 |
+
"benchmark_specific": "No",
|
| 7 |
+
"benchmark_tuned": "No",
|
| 8 |
+
"followed_evaluation_protocol": "Yes",
|
| 9 |
+
"reproducible": "Yes",
|
| 10 |
+
"comments": "NA"
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"benchmark": "WorkArena++-L2",
|
| 14 |
+
"score": 0.0,
|
| 15 |
+
"std_err": 0.0,
|
| 16 |
+
"benchmark_specific": "No",
|
| 17 |
+
"benchmark_tuned": "No",
|
| 18 |
+
"followed_evaluation_protocol": "Yes",
|
| 19 |
+
"reproducible": "Yes",
|
| 20 |
+
"comments": "NA"
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"benchmark": "WorkArena++-L3",
|
| 24 |
+
"score": 0.0,
|
| 25 |
+
"std_err": 0.0,
|
| 26 |
+
"benchmark_specific": "No",
|
| 27 |
+
"benchmark_tuned": "No",
|
| 28 |
+
"followed_evaluation_protocol": "Yes",
|
| 29 |
+
"reproducible": "Yes",
|
| 30 |
+
"comments": "NA"
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"benchmark": "MiniWoB",
|
| 34 |
+
"score": 62.4,
|
| 35 |
+
"std_err": 0.5,
|
| 36 |
+
"benchmark_specific": "No",
|
| 37 |
+
"benchmark_tuned": "No",
|
| 38 |
+
"followed_evaluation_protocol": "Yes",
|
| 39 |
+
"reproducible": "Yes",
|
| 40 |
+
"comments": "NA"
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"benchmark": "WebArena",
|
| 44 |
+
"score": 12.6,
|
| 45 |
+
"std_err": 0.9,
|
| 46 |
+
"benchmark_specific": "No",
|
| 47 |
+
"benchmark_tuned": "No",
|
| 48 |
+
"followed_evaluation_protocol": "Yes",
|
| 49 |
+
"reproducible": "Yes",
|
| 50 |
+
"comments": "NA"
|
| 51 |
+
}
|
| 52 |
+
]
|
results/Bgym-Mixtral-8x22b/webarena.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"agent_name": "Bgym-Mixtral-8x22b",
|
| 4 |
+
"study_id": "study_id",
|
| 5 |
+
"date_time": "2021-01-01 12:00:00",
|
| 6 |
+
"benchmark": "WebArena",
|
| 7 |
+
"score": 12.6,
|
| 8 |
+
"std_err": 0.9,
|
| 9 |
+
"benchmark_specific": "No",
|
| 10 |
+
"benchmark_tuned": "No",
|
| 11 |
+
"followed_evaluation_protocol": "Yes",
|
| 12 |
+
"reproducible": "Yes",
|
| 13 |
+
"comments": "NA",
|
| 14 |
+
"original_or_reproduced": "Original"
|
| 15 |
+
}
|
| 16 |
+
]
|
results/Bgym-Mixtral-8x22b/workarena++-l2.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"agent_name": "Bgym-Mixtral-8x22b",
|
| 4 |
+
"study_id": "study_id",
|
| 5 |
+
"date_time": "2021-01-01 12:00:00",
|
| 6 |
+
"benchmark": "WorkArena++-L2",
|
| 7 |
+
"score": 0.0,
|
| 8 |
+
"std_err": 0.0,
|
| 9 |
+
"benchmark_specific": "No",
|
| 10 |
+
"benchmark_tuned": "No",
|
| 11 |
+
"followed_evaluation_protocol": "Yes",
|
| 12 |
+
"reproducible": "Yes",
|
| 13 |
+
"comments": "NA",
|
| 14 |
+
"original_or_reproduced": "Original"
|
| 15 |
+
}
|
| 16 |
+
]
|
results/Bgym-Mixtral-8x22b/workarena++-l3.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"agent_name": "Bgym-Mixtral-8x22b",
|
| 4 |
+
"study_id": "study_id",
|
| 5 |
+
"date_time": "2021-01-01 12:00:00",
|
| 6 |
+
"benchmark": "WorkArena++-L3",
|
| 7 |
+
"score": 0.0,
|
| 8 |
+
"std_err": 0.0,
|
| 9 |
+
"benchmark_specific": "No",
|
| 10 |
+
"benchmark_tuned": "No",
|
| 11 |
+
"followed_evaluation_protocol": "Yes",
|
| 12 |
+
"reproducible": "Yes",
|
| 13 |
+
"comments": "NA",
|
| 14 |
+
"original_or_reproduced": "Original"
|
| 15 |
+
}
|
| 16 |
+
]
|
results/Bgym-Mixtral-8x22b/workarena-l1.json
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"agent_name": "Bgym-Mixtral-8x22b",
|
| 4 |
+
"study_id": "study_id",
|
| 5 |
+
"benchmark": "WorkArena-L1",
|
| 6 |
+
"score": 12.4,
|
| 7 |
+
"std_err": 0.7,
|
| 8 |
+
"benchmark_specific": "No",
|
| 9 |
+
"benchmark_tuned": "No",
|
| 10 |
+
"followed_evaluation_protocol": "Yes",
|
| 11 |
+
"reproducible": "Yes",
|
| 12 |
+
"comments": "NA",
|
| 13 |
+
"original_or_reproduced": "Original",
|
| 14 |
+
"date_time": "2021-01-04 12:06:00"
|
| 15 |
+
},
|
| 16 |
+
{
|
| 17 |
+
"agent_name": "Bgym-Mixtral-8x22b",
|
| 18 |
+
"study_id": "study_id",
|
| 19 |
+
"benchmark": "WorkArena-L1",
|
| 20 |
+
"score": 11.4,
|
| 21 |
+
"std_err": 0.7,
|
| 22 |
+
"benchmark_specific": "No",
|
| 23 |
+
"benchmark_tuned": "No",
|
| 24 |
+
"followed_evaluation_protocol": "Yes",
|
| 25 |
+
"reproducible": "Yes",
|
| 26 |
+
"comments": "NA",
|
| 27 |
+
"original_or_reproduced": "Reproduced",
|
| 28 |
+
"date_time": "2021-01-04 12:06:00"
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"agent_name": "Bgym-Mixtral-8x22b",
|
| 32 |
+
"study_id": "study_id",
|
| 33 |
+
"benchmark": "WorkArena-L1",
|
| 34 |
+
"score": 13.4,
|
| 35 |
+
"std_err": 0.7,
|
| 36 |
+
"benchmark_specific": "No",
|
| 37 |
+
"benchmark_tuned": "No",
|
| 38 |
+
"followed_evaluation_protocol": "Yes",
|
| 39 |
+
"reproducible": "Yes",
|
| 40 |
+
"comments": "NA",
|
| 41 |
+
"original_or_reproduced": "Reproduced",
|
| 42 |
+
"date_time": "2021-01-04 12:06:00"
|
| 43 |
+
}
|
| 44 |
+
]
|