Seyomi commited on
Commit
d75e318
Β·
1 Parent(s): 833c005

Add application file

Browse files
README.md CHANGED
@@ -1,14 +1,108 @@
 
 
 
 
1
  ---
2
- title: Community Rating System
3
- emoji: πŸ‘€
4
- colorFrom: green
5
- colorTo: red
6
- sdk: gradio
7
- sdk_version: 5.32.1
8
- app_file: app.py
9
- pinned: false
10
- license: mit
11
- short_description: AI rates comments for helpfulness and trustworthiness.
 
12
  ---
13
 
14
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🧠 Community Rating System for Social Posts
2
+
3
+ A machine learning-powered system that evaluates **community comments or notes** on public posts for **credibility, helpfulness, and factual consistency**, while actively resisting manipulation like spam voting or coordinated misinformation.
4
+
5
  ---
6
+
7
+ ## πŸ” Project Overview
8
+
9
+ This project builds a full-stack pipeline that:
10
+
11
+ - Processes public comments (e.g., Reddit, StackOverflow)
12
+ - Extracts features like sentiment, toxicity, readability, and named entities
13
+ - Scores notes/comments for **credibility** and **helpfulness**
14
+ - Detects manipulation attempts (e.g., bot voting, duplicate spam)
15
+ - Provides a web interface to interactively test the system
16
+
17
  ---
18
 
19
+ ## πŸš€ Features
20
+
21
+ - βœ… Transformer-based helpfulness scoring (e.g., RoBERTa)
22
+ - βœ… Anomaly detection using Isolation Forest
23
+ - βœ… Sentiment and toxicity classification
24
+ - βœ… Interactive UI with Gradio or Streamlit
25
+ - βœ… REST API using FastAPI
26
+ - βœ… Dockerized and deployable on Hugging Face Spaces or Render
27
+
28
+ ---
29
+
30
+ ## πŸ—‚οΈ Project Structure
31
+
32
+ ```plaintext
33
+ .
34
+ β”œβ”€β”€ data/
35
+ β”‚ └── sample_comments.csv # Input dataset
36
+ β”œβ”€β”€ models/ # Saved model checkpoints
37
+ β”œβ”€β”€ src/
38
+ β”‚ β”œβ”€β”€ app.py # Web interface
39
+ β”‚ β”œβ”€β”€ anomaly.py # Anomaly detection logic
40
+ β”‚ β”œβ”€β”€ data_preprocessing.py # Cleaning, tokenization, features
41
+ β”‚ β”œβ”€β”€ dataset.py # PyTorch dataset logic
42
+ β”‚ β”œβ”€β”€ evaluate.py # Evaluation metrics
43
+ β”‚ β”œβ”€β”€ main.py # Entry script
44
+ β”‚ β”œβ”€β”€ manipulation_detect.py # Bot/spam detection
45
+ β”‚ β”œβ”€β”€ model.py # Helpfulness scoring model
46
+ β”‚ β”œβ”€β”€ train_model.py # Training loop
47
+ β”‚ └── utils.py # Helper functions
48
+ β”œβ”€β”€ requirements.txt # Dependencies
49
+ β”œβ”€β”€ dockerfile # Container setup
50
+ └── README.md
51
+
52
+ ## πŸ“¦ Setup Instructions
53
+ πŸ”§ 1. Install Dependencies
54
+ - git clone https://github.com/yourusername/community-rating-system.git
55
+ - cd community-rating-system
56
+ - python -m venv env
57
+ - source env/bin/activate # or .\env\Scripts\activate on Windows
58
+ - pip install -r requirements.txt
59
+
60
+ ## πŸ§ͺ 2. Train the Helpfulness Model
61
+ - python src/train_model.py
62
+
63
+ ## 🧬 3. Run Anomaly Detection
64
+ - python src/manipulation_detect.py
65
+
66
+ ## 🌐 4. Launch Web Interface
67
+ - python src/app.py
68
+ or
69
+ - uvicorn src.main:app --reload
70
+
71
+ ## πŸ” Manipulation Resistance
72
+ - This project uses:
73
+ - Isolation Forest to detect abnormal user behavior (e.g., sudden karma spikes)
74
+ - Text similarity analysis to flag near-duplicate spam
75
+ - (Optional) Adversarial training to improve robustness against vote brigading
76
+
77
+ ## 🧠 ML Model Architecture
78
+ - Backbone: RoBERTa-base or BERT-base
79
+ - Input: comment_text, along with metadata like upvotes, length, time, etc.
80
+ - Output: A scalar score (0.0–1.0) representing helpfulness or credibility
81
+
82
+ Additional Features:
83
+ βœ… Sentiment polarity
84
+
85
+ βœ… Toxicity score (via Detoxify)
86
+
87
+ βœ… Readability score (Flesch–Kincaid, Gunning Fog Index)
88
+
89
+ βœ… Named Entity Types (political, scientific, health-related)
90
+
91
+
92
+ ## πŸ§ͺ Evaluation
93
+ Key metrics used for evaluating the scoring model and resistance components:
94
+
95
+ πŸ† ROC-AUC
96
+
97
+ 🎯 Precision@K
98
+
99
+ 🧩 Agreement with majority vote labels
100
+
101
+ πŸ“Š Confusion Matrix on manipulated vs. organic comment behavior
102
+
103
+ ## πŸ“¦ Docker Deployment
104
+ - To build and run the container locally:
105
+ - docker build -t community-rating-system .
106
+ - docker run -p 7860:7860 community-rating-system
107
+
108
+
dockerfile ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.10-slim
2
+
3
+ WORKDIR /app
4
+
5
+ COPY requirements.txt .
6
+
7
+ RUN pip install --no-cache-dir -r requirements.txt
8
+
9
+ COPY ./src ./src
10
+ COPY ./data ./data
11
+ COPY ./models ./models
12
+
13
+ EXPOSE 7860
14
+
15
+ CMD ["python", "src/app.py"]
models/roberta_metadata_classifier.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from transformers import RobertaModel
4
+
5
+ class RobertaWithMetadata(nn.Module):
6
+ def __init__(self, model_name='roberta-base', metadata_dim=3, dropout=0.3):
7
+ super(RobertaWithMetadata, self).__init__()
8
+ self.roberta = RobertaModel.from_pretrained(model_name)
9
+ self.dropout = nn.Dropout(dropout)
10
+
11
+ hidden_size = self.roberta.config.hidden_size # usually 768
12
+ self.metadata_dim = metadata_dim
13
+
14
+ # Final classifier takes RoBERTa CLS output + metadata
15
+ self.classifier = nn.Sequential(
16
+ nn.Linear(hidden_size + metadata_dim, 256),
17
+ nn.ReLU(),
18
+ nn.Dropout(dropout),
19
+ nn.Linear(256, 1) # single score output (e.g., helpfulness)
20
+ )
21
+
22
+ def forward(self, input_ids, attention_mask, metadata):
23
+ roberta_out = self.roberta(input_ids=input_ids, attention_mask=attention_mask)
24
+ cls_output = roberta_out.pooler_output # [CLS] token representation
25
+
26
+ combined = torch.cat((cls_output, metadata), dim=1)
27
+ out = self.classifier(self.dropout(combined))
28
+ return out.squeeze(1) # final regression output
requirements.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ torch
2
+ transformers
3
+ datasets
4
+ scikit-learn
5
+ pyod
6
+ gradio
7
+ pandas
8
+ numpy
9
+ detoxify
10
+ textstat
11
+ fastapi
12
+ uvicorn
13
+ joblib
src/__pycache__/dataset.cpython-312.pyc ADDED
Binary file (2.05 kB). View file
 
src/__pycache__/evaluate.cpython-312.pyc ADDED
Binary file (3.39 kB). View file
 
src/__pycache__/manipulation_detect.cpython-312.pyc ADDED
Binary file (2.39 kB). View file
 
src/__pycache__/model.cpython-312.pyc ADDED
Binary file (1.66 kB). View file
 
src/__pycache__/train_model.cpython-312.pyc ADDED
Binary file (5.82 kB). View file
 
src/anomaly.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ import joblib
2
+ import numpy as np
3
+
4
+ def load_anomaly_model(path='models/anomaly_detector.pkl'):
5
+ return joblib.load(path)
6
+
7
+ def is_anomalous(features, model):
8
+ score = model.decision_function([features])[0]
9
+ return model.predict([features])[0] == -1, score
src/app.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from transformers import RobertaTokenizer
4
+ from src.model import CommentClassifier
5
+ from src.utils import preprocess_comment, extract_metadata_features
6
+ from src.anomaly import load_anomaly_model
7
+
8
+
9
+ # Load tokenizer and model
10
+ tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
11
+ model = CommentClassifier()
12
+ model.load_state_dict(torch.load("models/best_model.pt", map_location=torch.device("cpu")))
13
+ model.eval()
14
+
15
+ # Load Isolation Forest model
16
+ anomaly_model = load_anomaly_model()
17
+
18
+ def predict_comment(text):
19
+ if not text.strip():
20
+ return "Enter a valid comment!", 0, 0, 0, 0
21
+
22
+ # Preprocess
23
+ input_text = preprocess_comment(text)
24
+ meta_features = extract_metadata_features(text)
25
+ meta_tensor = torch.tensor(meta_features, dtype=torch.float).unsqueeze(0)
26
+
27
+ # Tokenize
28
+ inputs = tokenizer(
29
+ input_text, padding="max_length", truncation=True, max_length=128, return_tensors="pt"
30
+ )
31
+
32
+ with torch.no_grad():
33
+ outputs = model(
34
+ input_ids=inputs["input_ids"],
35
+ attention_mask=inputs["attention_mask"],
36
+ meta_features=meta_tensor
37
+ )
38
+ probs = torch.softmax(outputs, dim=1).squeeze().numpy()
39
+
40
+ labels = ["Negative", "Neutral", "Positive"]
41
+ prediction = labels[probs.argmax()]
42
+ sentiment_score = round(probs[2], 2)
43
+
44
+ # Fake/toxic/helpfulness scores (simple heuristics)
45
+ toxicity = float(meta_features[0]) # e.g., from Detoxify or rule-based
46
+ helpfulness = float(meta_features[2])
47
+ anomaly_score = anomaly_model.decision_function([meta_features])[0]
48
+
49
+ return prediction, sentiment_score, round(toxicity, 2), round(helpfulness, 2), round(anomaly_score, 2)
50
+
51
+ # Gradio UI
52
+ iface = gr.Interface(
53
+ fn=predict_comment,
54
+ inputs=gr.Textbox(lines=4, label="Enter a Comment"),
55
+ outputs=[
56
+ gr.Textbox(label="Predicted Sentiment"),
57
+ gr.Number(label="Sentiment Score (0-1)"),
58
+ gr.Number(label="Toxicity Score"),
59
+ gr.Number(label="Helpfulness Score"),
60
+ gr.Number(label="Anomaly Score")
61
+ ],
62
+ title="🧠 Comment Quality Analyzer",
63
+ description="Paste any social media comment and get its sentiment, toxicity, helpfulness, and anomaly scores using a RoBERTa-based ML model.",
64
+ allow_flagging="never",
65
+ )
66
+
67
+ if __name__ == "__main__":
68
+ iface.launch()
src/data_preprocessing.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ import re
4
+ from sklearn.ensemble import IsolationForest
5
+ from detoxify import Detoxify
6
+ import textstat
7
+
8
+ # Clean text
9
+ def clean_text(text):
10
+ text = str(text).lower()
11
+ text = re.sub(r"http\S+|www\S+|https\S+", '', text)
12
+ text = re.sub(r'\@\w+|\#','', text)
13
+ text = re.sub(r'[^\w\s]', '', text)
14
+ return text
15
+
16
+ # Load and preprocess
17
+ def load_data(filepath):
18
+ df = pd.read_csv(filepath)
19
+ df.dropna(subset=["text", "helpfulness_score"], inplace=True)
20
+ return df
21
+
22
+ def preprocess_text(df):
23
+ df['text'] = df['text'].apply(clean_text)
24
+
25
+ # Toxicity score
26
+ print("Computing toxicity scores...")
27
+ toxicity_results = Detoxify('original').predict(df['text'].tolist())
28
+ df['toxicity_score'] = toxicity_results['toxicity']
29
+
30
+ # Readability score (lower is harder to read)
31
+ print("Computing readability scores...")
32
+ df['readability_score'] = df['text'].apply(lambda x: textstat.flesch_reading_ease(x))
33
+
34
+ # Anomaly Detection
35
+ print("Running anomaly detection...")
36
+ meta_features = df[["toxicity_score", "readability_score"]].fillna(0)
37
+ clf = IsolationForest(contamination=0.05, random_state=42)
38
+ df['is_anomalous'] = clf.fit_predict(meta_features)
39
+ df['is_anomalous'] = df['is_anomalous'].apply(lambda x: 1 if x == -1 else 0)
40
+
41
+ return df
42
+
43
+ # For custom evaluation later
44
+ def compute_custom_metrics(y_true, y_pred):
45
+ from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
46
+ return {
47
+ "MAE": mean_absolute_error(y_true, y_pred),
48
+ "MSE": mean_squared_error(y_true, y_pred),
49
+ "R2": r2_score(y_true, y_pred)
50
+ }
src/dataset.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # dataset.py
2
+
3
+ import pandas as pd
4
+ import torch
5
+ from torch.utils.data import Dataset
6
+ from transformers import RobertaTokenizer
7
+
8
+ class CommentDataset(Dataset):
9
+ def __init__(self, data, tokenizer, max_len=128):
10
+ self.data = data
11
+ self.tokenizer = tokenizer
12
+ self.max_len = max_len
13
+
14
+ def __len__(self):
15
+ return len(self.data)
16
+
17
+ def __getitem__(self, idx):
18
+ comment = self.data.iloc[idx]['comment']
19
+ label = self.data.iloc[idx]['label']
20
+ encoding = self.tokenizer(
21
+ comment,
22
+ padding='max_length',
23
+ truncation=True,
24
+ max_length=self.max_len,
25
+ return_tensors='pt'
26
+ )
27
+ return {
28
+ 'input_ids': encoding['input_ids'].squeeze(),
29
+ 'attention_mask': encoding['attention_mask'].squeeze(),
30
+ 'label': torch.tensor(label, dtype=torch.long)
31
+ }
32
+
33
+ def load_data(path):
34
+ df = pd.read_csv(path)
35
+ tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
36
+ dataset = CommentDataset(df, tokenizer)
37
+ return dataset
src/evaluate.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ from sklearn.metrics import roc_auc_score, precision_score
3
+ import torch
4
+ from train_model import HelpfulnessModel, tokenizer
5
+ import numpy as np
6
+ from torch.utils.data import DataLoader
7
+
8
+ DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
9
+ MODEL_PATH = "../models/helpfulness_model.pt"
10
+
11
+ def evaluate():
12
+ df = pd.read_csv("../data/sample_comments.csv")
13
+
14
+ df['helpfulness'] = (df['score'] - df['score'].min()) / (df['score'].max() - df['score'].min() + 1e-8)
15
+
16
+ meta_cols = ['token_len', 'toxicity', 'readability', 'political_mentions',
17
+ 'health_mentions', 'science_mentions', 'engagement', 'time_since_posted']
18
+ X_meta = df[meta_cols].fillna(0).values
19
+
20
+ texts = df['clean_text'].tolist()
21
+ targets = df['helpfulness'].values
22
+
23
+ dataset = CommentDataset(texts, X_meta, targets)
24
+ dataloader = DataLoader(dataset, batch_size=16)
25
+
26
+ model = HelpfulnessModel("roberta-base", X_meta.shape[1])
27
+ model.load_state_dict(torch.load(MODEL_PATH, map_location=DEVICE))
28
+ model.to(DEVICE)
29
+ model.eval()
30
+
31
+ preds = []
32
+ actuals = []
33
+
34
+ with torch.no_grad():
35
+ for input_ids, attention_mask, meta_features, targets in dataloader:
36
+ input_ids = input_ids.to(DEVICE)
37
+ attention_mask = attention_mask.to(DEVICE)
38
+ meta_features = meta_features.to(DEVICE)
39
+
40
+ outputs = model(input_ids, attention_mask, meta_features)
41
+ preds.extend(outputs.cpu().numpy())
42
+ actuals.extend(targets.numpy())
43
+
44
+ auc = roc_auc_score(actuals, preds)
45
+ k = 100
46
+ df_eval = pd.DataFrame({'pred': preds, 'actual': actuals})
47
+ df_eval_sorted = df_eval.sort_values('pred', ascending=False).head(k)
48
+ precision_at_k = (df_eval_sorted['actual'] > 0.5).mean()
49
+
50
+ print(f"AUC: {auc:.4f}")
51
+ print(f"Precision@{k}: {precision_at_k:.4f}")
52
+
53
+ if __name__ == "__main__":
54
+ evaluate()
src/main.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+
4
+ from train_model import train
5
+ from evaluate import evaluate
6
+ import app
7
+
8
+ def main():
9
+ parser = argparse.ArgumentParser(description="Community Comment Rating System")
10
+
11
+ parser.add_argument("--mode", type=str, required=True,
12
+ choices=["train", "evaluate", "app"],
13
+ help="Mode to run: train / evaluate / app")
14
+
15
+ args = parser.parse_args()
16
+
17
+ if args.mode == "train":
18
+ print("πŸš€ Starting Training...")
19
+ train()
20
+
21
+ elif args.mode == "evaluate":
22
+ print("πŸ“Š Starting Evaluation...")
23
+ evaluate()
24
+
25
+ elif args.mode == "app":
26
+ print("🌐 Launching Gradio App...")
27
+ app.iface.launch()
28
+
29
+ if __name__ == "__main__":
30
+ main()
src/manipulation_detect.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.utils.data import Dataset
3
+ from transformers import RobertaTokenizer
4
+
5
+ class CommentDataset(Dataset):
6
+ def __init__(self, dataframe, max_len=128):
7
+ self.texts = dataframe["text"].tolist()
8
+ self.labels = dataframe["helpfulness_score"].tolist()
9
+ self.toxicity = dataframe["toxicity_score"].tolist()
10
+ self.readability = dataframe["readability_score"].tolist()
11
+ self.anomaly = dataframe["is_anomalous"].tolist()
12
+
13
+ self.tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
14
+ self.max_len = max_len
15
+
16
+ def __len__(self):
17
+ return len(self.texts)
18
+
19
+ def __getitem__(self, idx):
20
+ encoded = self.tokenizer(
21
+ self.texts[idx],
22
+ padding='max_length',
23
+ truncation=True,
24
+ max_length=self.max_len,
25
+ return_tensors="pt"
26
+ )
27
+
28
+ # Metadata features: concatenate scalar values
29
+ metadata = torch.tensor([
30
+ self.toxicity[idx],
31
+ self.readability[idx],
32
+ self.anomaly[idx]
33
+ ], dtype=torch.float)
34
+
35
+ return {
36
+ "input_ids": encoded["input_ids"].squeeze(0),
37
+ "attention_mask": encoded["attention_mask"].squeeze(0),
38
+ "metadata": metadata,
39
+ "label": torch.tensor(self.labels[idx], dtype=torch.float)
40
+ }
src/model.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ from transformers import RobertaModel
3
+
4
+ class CommentClassifier(nn.Module):
5
+ def __init__(self, dropout=0.3):
6
+ super(CommentClassifier, self).__init__()
7
+ self.roberta = RobertaModel.from_pretrained("roberta-base")
8
+ self.dropout = nn.Dropout(dropout)
9
+ self.classifier = nn.Linear(self.roberta.config.hidden_size + 3, 1) # +3 for metadata features
10
+
11
+ def forward(self, input_ids, attention_mask, metadata_features):
12
+ outputs = self.roberta(input_ids=input_ids, attention_mask=attention_mask)
13
+ pooled_output = outputs.pooler_output
14
+ combined = torch.cat((pooled_output, metadata_features), dim=1)
15
+ x = self.dropout(combined)
16
+ return self.classifier(x)
src/train_model.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ from torch.utils.data import DataLoader
4
+ from transformers import RobertaModel, get_scheduler
5
+ from torch.optim import AdamW
6
+ from tqdm import tqdm
7
+ import os
8
+
9
+ from dataset import CommentDataset, load_data
10
+ from model import CommentRatingModel
11
+
12
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
13
+
14
+ class RoBERTaWithMetadata(nn.Module):
15
+ def __init__(self, dropout=0.3):
16
+ super().__init__()
17
+ self.roberta = RobertaModel.from_pretrained("roberta-base")
18
+ self.dropout = nn.Dropout(dropout)
19
+ self.metadata_fc = nn.Linear(3, 64)
20
+ self.classifier = nn.Sequential(
21
+ nn.Linear(self.roberta.config.hidden_size + 64, 128),
22
+ nn.ReLU(),
23
+ nn.Dropout(0.2),
24
+ nn.Linear(128, 1) # Regression output
25
+ )
26
+
27
+ def forward(self, input_ids, attention_mask, metadata):
28
+ roberta_out = self.roberta(input_ids=input_ids, attention_mask=attention_mask).pooler_output
29
+ meta_out = torch.relu(self.metadata_fc(metadata))
30
+ combined = torch.cat([roberta_out, meta_out], dim=1)
31
+ return self.classifier(combined)
32
+
33
+ def train(model, train_loader, val_loader, epochs=5, lr=2e-5, checkpoint_path="models/best_model.pt"):
34
+ criterion = nn.MSELoss()
35
+ optimizer = AdamW(model.parameters(), lr=lr)
36
+ num_training_steps = epochs * len(train_loader)
37
+ scheduler = get_scheduler("linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps)
38
+
39
+ best_loss = float("inf")
40
+
41
+ for epoch in range(epochs):
42
+ model.train()
43
+ total_loss = 0
44
+ for batch in train_loader:
45
+ optimizer.zero_grad()
46
+ input_ids = batch["input_ids"].to(device)
47
+ attention_mask = batch["attention_mask"].to(device)
48
+ metadata = batch["metadata"].to(device)
49
+ labels = batch["label"].to(device).unsqueeze(1)
50
+
51
+ outputs = model(input_ids, attention_mask, metadata)
52
+ loss = criterion(outputs, labels)
53
+ loss.backward()
54
+ optimizer.step()
55
+ scheduler.step()
56
+
57
+ total_loss += loss.item()
58
+
59
+ avg_train_loss = total_loss / len(train_loader)
60
+
61
+ # Validation
62
+ model.eval()
63
+ val_loss = 0
64
+ with torch.no_grad():
65
+ for batch in val_loader:
66
+ input_ids = batch["input_ids"].to(device)
67
+ attention_mask = batch["attention_mask"].to(device)
68
+ metadata = batch["metadata"].to(device)
69
+ labels = batch["label"].to(device).unsqueeze(1)
70
+
71
+ outputs = model(input_ids, attention_mask, metadata)
72
+ loss = criterion(outputs, labels)
73
+ val_loss += loss.item()
74
+ avg_val_loss = val_loss / len(val_loader)
75
+
76
+ print(f"Epoch {epoch+1}: Train Loss = {avg_train_loss:.4f} | Val Loss = {avg_val_loss:.4f}")
77
+
78
+ if avg_val_loss < best_loss:
79
+ best_loss = avg_val_loss
80
+ torch.save(model.state_dict(), checkpoint_path)
81
+ print("βœ… Saved best model")
82
+
83
+ if __name__ == "__main__":
84
+ df = pd.read_csv("data/final_dataset.csv")
85
+ train_df = df.sample(frac=0.8, random_state=42)
86
+ val_df = df.drop(train_df.index)
87
+
88
+ train_dataset = CommentDataset(train_df)
89
+ val_dataset = CommentDataset(val_df)
90
+
91
+ train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
92
+ val_loader = DataLoader(val_dataset, batch_size=16)
93
+
94
+ model = RoBERTaWithMetadata().to(device)
95
+ os.makedirs("models", exist_ok=True)
96
+ train(model, train_loader, val_loader)
src/utils.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import re
3
+ import string
4
+ from detoxify import Detoxify
5
+
6
+ detox_model = Detoxify('original')
7
+
8
+ def preprocess_comment(text):
9
+ text = re.sub(r"http\S+", "", text)
10
+ text = text.lower()
11
+ text = text.translate(str.maketrans("", "", string.punctuation))
12
+ return text.strip()
13
+
14
+ def extract_metadata_features(text):
15
+ toxicity = detox_model.predict(text)["toxicity"]
16
+ word_count = len(text.split())
17
+ readability = min(1.0, word_count / 50) # Normalize to [0,1]
18
+ engagement = min(1.0, sum(1 for w in text.split() if len(w) > 6) / word_count) if word_count else 0
19
+ return np.array([toxicity, readability, engagement], dtype=np.float32)