Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import yt_dlp
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from faster_whisper import WhisperModel
|
| 5 |
+
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
|
| 6 |
+
import openai
|
| 7 |
+
import torch
|
| 8 |
+
|
| 9 |
+
# Optional: Set your OpenAI API key (use env var for security)
|
| 10 |
+
openai.api_key = "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" # Replace with your real key or set as os.environ["OPENAI_API_KEY"]
|
| 11 |
+
|
| 12 |
+
def download_and_extract_audio(youtube_url):
|
| 13 |
+
output_path = "downloads"
|
| 14 |
+
os.makedirs(output_path, exist_ok=True)
|
| 15 |
+
|
| 16 |
+
ydl_opts = {
|
| 17 |
+
'format': 'bestaudio/best',
|
| 18 |
+
'outtmpl': os.path.join(output_path, '%(id)s.%(ext)s'),
|
| 19 |
+
'postprocessors': [{
|
| 20 |
+
'key': 'FFmpegExtractAudio',
|
| 21 |
+
'preferredcodec': 'mp3',
|
| 22 |
+
'preferredquality': '192',
|
| 23 |
+
}],
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 27 |
+
info_dict = ydl.extract_info(youtube_url, download=True)
|
| 28 |
+
video_id = info_dict.get("id", None)
|
| 29 |
+
filename = os.path.join(output_path, f"{video_id}.mp3")
|
| 30 |
+
return filename
|
| 31 |
+
|
| 32 |
+
def transcribe_audio(audio_path):
|
| 33 |
+
model = WhisperModel("base", compute_type="int8", device="cuda" if torch.cuda.is_available() else "cpu")
|
| 34 |
+
segments, _ = model.transcribe(audio_path)
|
| 35 |
+
transcript = " ".join([seg.text for seg in segments])
|
| 36 |
+
return transcript
|
| 37 |
+
|
| 38 |
+
# Preload FLAN-T5 model offline
|
| 39 |
+
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large")
|
| 40 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-large")
|
| 41 |
+
local_gen = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
|
| 42 |
+
|
| 43 |
+
def generate_response(transcript, user_prompt, use_online=False):
|
| 44 |
+
prompt = f"""You are a helpful AI assistant. Based on the transcript of a video, please {user_prompt.strip().lower()}.
|
| 45 |
+
|
| 46 |
+
Transcript:
|
| 47 |
+
{transcript[:3000]}"""
|
| 48 |
+
|
| 49 |
+
if use_online:
|
| 50 |
+
try:
|
| 51 |
+
response = openai.ChatCompletion.create(
|
| 52 |
+
model="gpt-4",
|
| 53 |
+
messages=[{"role": "user", "content": prompt}],
|
| 54 |
+
max_tokens=1000
|
| 55 |
+
)
|
| 56 |
+
return response.choices[0].message["content"]
|
| 57 |
+
except Exception as e:
|
| 58 |
+
return f"⚠️ Online API failed: {str(e)}"
|
| 59 |
+
else:
|
| 60 |
+
result = local_gen(prompt, max_length=1024, do_sample=False)
|
| 61 |
+
return result[0]['generated_text']
|
| 62 |
+
|
| 63 |
+
def enhanced_ai_study_pipeline(video_source, youtube_url, upload_file, user_prompt, use_online_api):
|
| 64 |
+
try:
|
| 65 |
+
if video_source == "YouTube URL":
|
| 66 |
+
audio_path = download_and_extract_audio(youtube_url)
|
| 67 |
+
elif video_source == "Upload File" and upload_file is not None:
|
| 68 |
+
audio_path = upload_file.name
|
| 69 |
+
else:
|
| 70 |
+
return "No valid input provided.", ""
|
| 71 |
+
|
| 72 |
+
transcript = transcribe_audio(audio_path)
|
| 73 |
+
ai_response = generate_response(transcript, user_prompt, use_online=use_online_api)
|
| 74 |
+
return transcript, ai_response
|
| 75 |
+
except Exception as e:
|
| 76 |
+
return "Error occurred", str(e)
|
| 77 |
+
|
| 78 |
+
video_input = gr.Radio(["YouTube URL", "Upload File"], label="Video Source")
|
| 79 |
+
youtube_url = gr.Textbox(label="Enter YouTube URL")
|
| 80 |
+
upload_file = gr.File(label="Upload a Video File", file_types=[".mp4", ".mp3", ".wav"])
|
| 81 |
+
user_prompt = gr.Textbox(label="What do you want from the transcript?", placeholder="e.g., Prepare a diet plan based on this video")
|
| 82 |
+
use_online_api = gr.Checkbox(label="Use Online API (GPT-4)", value=False)
|
| 83 |
+
|
| 84 |
+
gr.Interface(
|
| 85 |
+
fn=enhanced_ai_study_pipeline,
|
| 86 |
+
inputs=[video_input, youtube_url, upload_file, user_prompt, use_online_api],
|
| 87 |
+
outputs=[
|
| 88 |
+
gr.Textbox(label="Transcript"),
|
| 89 |
+
gr.Textbox(label="AI Response")
|
| 90 |
+
],
|
| 91 |
+
title="📚 AI Transcription Assistant (Offline + Online GPT)",
|
| 92 |
+
description="Upload or paste a YouTube video. Enter your goal and get a smart AI answer. Works offline with FLAN-T5 or online with GPT-4."
|
| 93 |
+
).launch(share=True)
|