Spaces:
Running
Running
File size: 20,283 Bytes
e8b46b5 24ad2d2 1055fe1 e8b46b5 24ad2d2 1055fe1 e8b46b5 24ad2d2 e8b46b5 24ad2d2 1055fe1 24ad2d2 1055fe1 24ad2d2 1055fe1 24ad2d2 1055fe1 e8b46b5 1055fe1 24ad2d2 1055fe1 24ad2d2 1055fe1 1487325 1055fe1 24ad2d2 1487325 24ad2d2 1487325 24ad2d2 1487325 24ad2d2 c4e2e43 1487325 c4e2e43 24ad2d2 c4e2e43 1487325 c4e2e43 24ad2d2 1487325 c4e2e43 24ad2d2 1487325 c4e2e43 1487325 c4e2e43 24ad2d2 c4e2e43 1055fe1 24ad2d2 c4e2e43 1055fe1 24ad2d2 1055fe1 24ad2d2 1487325 c4e2e43 1487325 c4e2e43 1487325 c4e2e43 24ad2d2 c4e2e43 1055fe1 24ad2d2 1055fe1 1487325 24ad2d2 1055fe1 24ad2d2 1055fe1 24ad2d2 1055fe1 24ad2d2 1055fe1 1487325 1055fe1 24ad2d2 1055fe1 24ad2d2 1055fe1 24ad2d2 1055fe1 1487325 24ad2d2 1487325 24ad2d2 1487325 24ad2d2 1487325 24ad2d2 1487325 24ad2d2 1487325 24ad2d2 1487325 24ad2d2 1487325 24ad2d2 1487325 24ad2d2 1487325 24ad2d2 1487325 24ad2d2 1487325 24ad2d2 1487325 24ad2d2 1487325 24ad2d2 1487325 24ad2d2 1055fe1 24ad2d2 1055fe1 24ad2d2 1055fe1 24ad2d2 1055fe1 e8b46b5 1055fe1 24ad2d2 1055fe1 24ad2d2 1055fe1 24ad2d2 1055fe1 24ad2d2 1055fe1 24ad2d2 1055fe1 24ad2d2 1055fe1 24ad2d2 1055fe1 24ad2d2 1055fe1 24ad2d2 e8b46b5 1055fe1 24ad2d2 1055fe1 e8b46b5 1055fe1 24ad2d2 1055fe1 24ad2d2 1055fe1 24ad2d2 e8b46b5 24ad2d2 1055fe1 24ad2d2 1055fe1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
#!/usr/bin/env python3
"""
extract_red_text.py
Improved version that reuses hf_utils for shared heuristics while preserving
the original schema logic, logging and behavior.
"""
import re
import json
import sys
from docx import Document
from docx.oxml.ns import qn
# master schema & patterns (unchanged)
from master_key import TABLE_SCHEMAS, HEADING_PATTERNS, PARAGRAPH_PATTERNS
# canonical helpers (from your new hf_utils.py)
from hf_utils import (
is_red_font,
normalize_text,
normalize_header_text,
flatten_json,
find_matching_json_key_and_value,
get_clean_text,
has_red_text,
extract_red_text_segments,
replace_red_text_in_cell,
key_is_forbidden_for_position,
)
# -------------------------------------------------------------------
# Small XML helper (kept exactly as before β low-level)
# -------------------------------------------------------------------
def _prev_para_text(tbl):
"""Get text from previous paragraph before table"""
prev = tbl._tbl.getprevious()
while prev is not None and not prev.tag.endswith("}p"):
prev = prev.getprevious()
if prev is None:
return ""
return "".join(node.text for node in prev.iter() if node.tag.endswith("}t") and node.text).strip()
# -------------------------------------------------------------------
# Table context helpers (use normalize_text from hf_utils)
# -------------------------------------------------------------------
def fuzzy_match_heading(heading, patterns):
"""Check if heading matches any pattern with fuzzy matching"""
if not heading:
return False
heading_norm = normalize_text(heading).upper()
for pattern in patterns:
try:
if re.search(pattern, heading_norm, re.IGNORECASE):
return True
except re.error:
# fallback simple substring if pattern isn't a valid re
if pattern.upper() in heading_norm:
return True
return False
def get_table_context(tbl):
"""Get comprehensive context information for table"""
heading = normalize_text(_prev_para_text(tbl))
# first row headers
headers = [normalize_text(c.text) for c in tbl.rows[0].cells if c.text.strip()] if tbl.rows else []
col0 = [normalize_text(r.cells[0].text) for r in tbl.rows if r.cells and r.cells[0].text.strip()]
first_cell = normalize_text(tbl.rows[0].cells[0].text) if tbl.rows else ""
all_cells = []
for row in tbl.rows:
for cell in row.cells:
text = normalize_text(cell.text)
if text:
all_cells.append(text)
return {
'heading': heading,
'headers': headers,
'col0': col0,
'first_cell': first_cell,
'all_cells': all_cells,
'num_rows': len(tbl.rows),
'num_cols': len(tbl.rows[0].cells) if tbl.rows else 0
}
# -------------------------------------------------------------------
# Scoring / matching logic (kept your behavior but using normalize_text)
# -------------------------------------------------------------------
def calculate_schema_match_score(schema_name, spec, context):
"""Enhanced calculate match score - IMPROVED for Vehicle Registration tables"""
score = 0
reasons = []
# VEHICLE REGISTRATION BOOST
if "Vehicle Registration" in schema_name:
vehicle_keywords = ["registration", "vehicle", "sub-contractor", "weight verification", "rfs suspension"]
table_text = " ".join(context['headers']).lower() + " " + context['heading'].lower()
keyword_matches = sum(1 for keyword in vehicle_keywords if keyword in table_text)
if keyword_matches >= 2:
score += 150
reasons.append(f"Vehicle Registration keywords: {keyword_matches}/5")
elif keyword_matches >= 1:
score += 75
reasons.append(f"Some Vehicle Registration keywords: {keyword_matches}/5")
# SUMMARY TABLE BOOST (existing logic)
if "Summary" in schema_name and "details" in " ".join(context['headers']).lower():
score += 100
reasons.append(f"Summary schema with DETAILS column - perfect match")
if "Summary" not in schema_name and "details" in " ".join(context['headers']).lower():
score -= 75
reasons.append(f"Non-summary schema penalized for DETAILS column presence")
# Context exclusions
if spec.get("context_exclusions"):
table_text = " ".join(context['headers']).lower() + " " + context['heading'].lower()
for exclusion in spec["context_exclusions"]:
if exclusion.lower() in table_text:
score -= 50
reasons.append(f"Context exclusion penalty: '{exclusion}' found")
# Context keywords
if spec.get("context_keywords"):
table_text = " ".join(context['headers']).lower() + " " + context['heading'].lower()
keyword_matches = 0
for keyword in spec["context_keywords"]:
if keyword.lower() in table_text:
keyword_matches += 1
if keyword_matches > 0:
score += keyword_matches * 15
reasons.append(f"Context keyword matches: {keyword_matches}/{len(spec['context_keywords'])}")
# Direct first cell match
if context['first_cell'] and context['first_cell'].upper() == schema_name.upper():
score += 100
reasons.append(f"Direct first cell match: '{context['first_cell']}'")
# Heading pattern matching
if spec.get("headings"):
for h in spec["headings"]:
if fuzzy_match_heading(context['heading'], [h.get("text", "")]):
score += 50
reasons.append(f"Heading match: '{context['heading']}'")
break
# Column header matching
if spec.get("columns"):
cols = [normalize_text(col) for col in spec["columns"]]
matches = 0
for col in cols:
if any(col.upper() in h.upper() for h in context['headers']):
matches += 1
if matches == len(cols):
score += 60
reasons.append(f"All column headers match: {cols}")
elif matches > 0:
score += matches * 20
reasons.append(f"Partial column matches: {matches}/{len(cols)}")
# Label matching for left-oriented tables
if spec.get("orientation") == "left":
labels = [normalize_text(lbl) for lbl in spec["labels"]]
matches = 0
for lbl in labels:
if any(lbl.upper() in c.upper() or c.upper() in lbl.upper() for c in context['col0']):
matches += 1
if matches > 0:
score += (matches / len(labels)) * 30
reasons.append(f"Left orientation label matches: {matches}/{len(labels)}")
# Enhanced Label matching for row1-oriented tables (Vehicle Registration)
elif spec.get("orientation") == "row1":
labels = [normalize_text(lbl) for lbl in spec["labels"]]
matches = 0
for lbl in labels:
if any(lbl.upper() in h.upper() or h.upper() in lbl.upper() for h in context['headers']):
matches += 1
elif any(word.upper() in " ".join(context['headers']).upper() for word in lbl.split() if len(word) > 3):
matches += 0.5
if matches > 0:
score += (matches / len(labels)) * 40
reasons.append(f"Row1 orientation header matches: {matches}/{len(labels)}")
# Special handling for Declaration tables
if schema_name == "Operator Declaration" and context['first_cell'].upper() == "PRINT NAME":
if "OPERATOR DECLARATION" in context['heading'].upper():
score += 80
reasons.append("Operator Declaration context match")
elif any("MANAGER" in cell.upper() for cell in context['all_cells']):
score += 60
reasons.append("Manager found in cells (likely Operator Declaration)")
if schema_name == "NHVAS Approved Auditor Declaration" and context['first_cell'].upper() == "PRINT NAME":
if any("MANAGER" in cell.upper() for cell in context['all_cells']):
score -= 50
reasons.append("Penalty: Manager found (not auditor)")
return score, reasons
def match_table_schema(tbl):
"""Improved table schema matching with scoring system"""
context = get_table_context(tbl)
best_match = None
best_score = 0
for name, spec in TABLE_SCHEMAS.items():
score, reasons = calculate_schema_match_score(name, spec, context)
if score > best_score:
best_score = score
best_match = name
if best_score >= 20:
return best_match
return None
# -------------------------------------------------------------------
# Multi-schema detection & extraction (kept behavior)
# -------------------------------------------------------------------
def check_multi_schema_table(tbl):
"""Check if table contains multiple schemas and split appropriately"""
context = get_table_context(tbl)
operator_labels = ["Operator name (Legal entity)", "NHVAS Accreditation No.", "Registered trading name/s",
"Australian Company Number", "NHVAS Manual"]
contact_labels = ["Operator business address", "Operator Postal address", "Email address", "Operator Telephone Number"]
has_operator = any(any(op_lbl.upper() in cell.upper() for op_lbl in operator_labels) for cell in context['col0'])
has_contact = any(any(cont_lbl.upper() in cell.upper() for cont_lbl in contact_labels) for cell in context['col0'])
if has_operator and has_contact:
return ["Operator Information", "Operator contact details"]
return None
def extract_multi_schema_table(tbl, schemas):
"""Extract data from table with multiple schemas"""
result = {}
for schema_name in schemas:
if schema_name not in TABLE_SCHEMAS:
continue
spec = TABLE_SCHEMAS[schema_name]
schema_data = {}
for ri, row in enumerate(tbl.rows):
if ri == 0:
continue
row_label = normalize_text(row.cells[0].text)
belongs_to_schema = False
matched_label = None
for spec_label in spec["labels"]:
spec_norm = normalize_text(spec_label).upper()
row_norm = row_label.upper()
if spec_norm == row_norm or spec_norm in row_norm or row_norm in spec_norm:
belongs_to_schema = True
matched_label = spec_label
break
if not belongs_to_schema:
continue
for ci, cell in enumerate(row.cells):
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
if red_txt:
if matched_label not in schema_data:
schema_data[matched_label] = []
if red_txt not in schema_data[matched_label]:
schema_data[matched_label].append(red_txt)
if schema_data:
result[schema_name] = schema_data
return result
# -------------------------------------------------------------------
# Table extraction for schemas (kept your specialized vehicle handling)
# -------------------------------------------------------------------
def extract_table_data(tbl, schema_name, spec):
"""Extract red text data from table based on schema - ENHANCED for Vehicle Registration"""
# Special handling for vehicle registration tables
if "Vehicle Registration" in schema_name:
print(f" π EXTRACTION FIX: Processing Vehicle Registration table")
labels = spec["labels"]
collected = {lbl: [] for lbl in labels}
seen = {lbl: set() for lbl in labels}
if len(tbl.rows) < 2:
print(f" β Vehicle table has less than 2 rows")
return {}
header_row = tbl.rows[0]
column_mapping = {}
print(f" π Mapping {len(header_row.cells)} header cells to labels")
for col_idx, cell in enumerate(header_row.cells):
header_text = normalize_text(cell.text).strip()
if not header_text:
continue
print(f" Column {col_idx}: '{header_text}'")
best_match = None
best_score = 0
for label in labels:
if header_text.upper() == label.upper():
best_match = label
best_score = 1.0
break
header_words = set(word.upper() for word in header_text.split() if len(word) > 2)
label_words = set(word.upper() for word in label.split() if len(word) > 2)
if header_words and label_words:
common_words = header_words.intersection(label_words)
if common_words:
score = len(common_words) / max(len(header_words), len(label_words))
if score > best_score and score >= 0.4:
best_score = score
best_match = label
if best_match:
column_mapping[col_idx] = best_match
print(f" β
Mapped to: '{best_match}' (score: {best_score:.2f})")
else:
print(f" β οΈ No mapping found for '{header_text}'")
print(f" π Total column mappings: {len(column_mapping)}")
# Extract red text from data rows (skip header)
for row_idx in range(1, len(tbl.rows)):
row = tbl.rows[row_idx]
print(f" π Processing data row {row_idx}")
for col_idx, cell in enumerate(row.cells):
if col_idx in column_mapping:
label = column_mapping[col_idx]
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
if red_txt:
print(f" π΄ Found red text in '{label}': '{red_txt}'")
if red_txt not in seen[label]:
seen[label].add(red_txt)
collected[label].append(red_txt)
result = {k: v for k, v in collected.items() if v}
print(f" β
Vehicle Registration extracted: {len(result)} columns with data")
return result
# FALLBACK: original extraction logic for other tables
labels = spec.get("labels", []) + [schema_name]
collected = {lbl: [] for lbl in labels}
seen = {lbl: set() for lbl in labels}
by_col = (spec.get("orientation") == "row1")
start_row = 1 if by_col else 0
rows = tbl.rows[start_row:]
for ri, row in enumerate(rows):
for ci, cell in enumerate(row.cells):
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
if not red_txt:
continue
if by_col:
if ci < len(spec.get("labels", [])):
lbl = spec["labels"][ci]
else:
lbl = schema_name
else:
raw_label = normalize_text(row.cells[0].text)
lbl = None
for spec_label in spec.get("labels", []):
if normalize_text(spec_label).upper() == raw_label.upper():
lbl = spec_label
break
if not lbl:
for spec_label in spec.get("labels", []):
spec_norm = normalize_text(spec_label).upper()
raw_norm = raw_label.upper()
if spec_norm in raw_norm or raw_norm in spec_norm:
lbl = spec_label
break
if not lbl:
lbl = schema_name
if red_txt not in seen[lbl]:
seen[lbl].add(red_txt)
collected[lbl].append(red_txt)
return {k: v for k, v in collected.items() if v}
# -------------------------------------------------------------------
# Main extraction: iterate tables & paragraphs
# -------------------------------------------------------------------
def extract_red_text(input_doc):
"""
input_doc: docx.Document object or file path
returns: dict
"""
if isinstance(input_doc, str):
doc = Document(input_doc)
else:
doc = input_doc
out = {}
table_count = 0
for tbl in doc.tables:
table_count += 1
# Check multi-schema table first
multi_schemas = check_multi_schema_table(tbl)
if multi_schemas:
multi_data = extract_multi_schema_table(tbl, multi_schemas)
for schema_name, schema_data in multi_data.items():
if schema_data:
if schema_name in out:
for k, v in schema_data.items():
if k in out[schema_name]:
out[schema_name][k].extend(v)
else:
out[schema_name][k] = v
else:
out[schema_name] = schema_data
continue
schema = match_table_schema(tbl)
if not schema:
# keep scanning for tables even if no schema matched
continue
spec = TABLE_SCHEMAS[schema]
data = extract_table_data(tbl, schema, spec)
if data:
if schema in out:
for k, v in data.items():
if k in out[schema]:
out[schema][k].extend(v)
else:
out[schema][k] = v
else:
out[schema] = data
# paragraphs
paras = {}
for idx, para in enumerate(doc.paragraphs):
red_txt = "".join(r.text for r in para.runs if is_red_font(r)).strip()
if not red_txt:
continue
# find context heading by scanning backward
context = None
for j in range(idx-1, -1, -1):
txt = normalize_text(doc.paragraphs[j].text)
if txt:
all_patterns = HEADING_PATTERNS["main"] + HEADING_PATTERNS["sub"]
if any(re.search(p, txt, re.IGNORECASE) for p in all_patterns):
context = txt
break
# if it's date-like and matches date pattern, set context to Date
if not context and re.fullmatch(PARAGRAPH_PATTERNS["date_line"], red_txt):
context = "Date"
if not context:
context = "(para)"
paras.setdefault(context, []).append(red_txt)
if paras:
out["paragraphs"] = paras
return out
# -------------------------------------------------------------------
# File-like wrapper (keeps API used elsewhere)
# -------------------------------------------------------------------
def extract_red_text_filelike(input_file, output_file):
"""
Accepts:
input_file: file-like object (BytesIO/File) or path
output_file: file-like object (opened for writing text) or path
"""
if hasattr(input_file, "seek"):
input_file.seek(0)
doc = Document(input_file)
result = extract_red_text(doc)
if hasattr(output_file, "write"):
json.dump(result, output_file, indent=2, ensure_ascii=False)
output_file.flush()
else:
with open(output_file, "w", encoding="utf-8") as f:
json.dump(result, f, indent=2, ensure_ascii=False)
return result
# -------------------------------------------------------------------
# CLI entrypoint (preserve original UX)
# -------------------------------------------------------------------
if __name__ == "__main__":
if len(sys.argv) == 3:
input_docx = sys.argv[1]
output_json = sys.argv[2]
doc = Document(input_docx)
word_data = extract_red_text(doc)
with open(output_json, 'w', encoding='utf-8') as f:
json.dump(word_data, f, indent=2, ensure_ascii=False)
print(json.dumps(word_data, indent=2, ensure_ascii=False))
else:
print("To use as a module: extract_red_text_filelike(input_file, output_file)") |