File size: 7,345 Bytes
97cac57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# hf_utils.py
"""
Shared helpers for HF red-text extraction / matching.

Usage:
  from hf_utils import (
      is_red_font, normalize_text, normalize_header_text,
      flatten_json, find_matching_json_key_and_value,
      get_clean_text, has_red_text, extract_red_text_segments,
      replace_red_text_in_cell, key_is_forbidden_for_position
  )
"""

import re
from typing import Any, Dict, Optional, Tuple
from docx.shared import RGBColor

# -------------------------
# Red color detection
# -------------------------
def is_red_font(run) -> bool:
    """Robust red-color detection for docx.run objects.

    - checks run.font.color.rgb when available
    - checks run._element.rPr/w:color hex val
    - tolerant to slightly different reds (not strict 255,0,0).
    """
    try:
        col = getattr(run.font, "color", None)
        if col is not None and getattr(col, "rgb", None):
            rgb = col.rgb
            try:
                # rgb may be sequence-like
                r, g, b = rgb[0], rgb[1], rgb[2]
            except Exception:
                # fallback attribute access
                r = getattr(rgb, "r", None) or getattr(rgb, "red", None)
                g = getattr(rgb, "g", None) or getattr(rgb, "green", None)
                b = getattr(rgb, "b", None) or getattr(rgb, "blue", None)
            if r is None:
                return False
            # tolerant heuristic: red must be noticeably higher than green/blue
            if r >= 160 and g <= 120 and b <= 120 and (r - g) >= 30 and (r - b) >= 30:
                return True
    except Exception:
        pass

    # fallback to raw XML color code if present
    try:
        rPr = run._element.rPr
        if rPr is not None:
            clr = rPr.find('{http://schemas.openxmlformats.org/wordprocessingml/2006/main}color')
            if clr is not None:
                val = clr.get('{http://schemas.openxmlformats.org/wordprocessingml/2006/main}val')
                if val and re.fullmatch(r"[0-9A-Fa-f]{6}", val):
                    rr, gg, bb = int(val[:2], 16), int(val[2:4], 16), int(val[4:], 16)
                    if rr >= 160 and gg <= 120 and bb <= 120 and (rr - gg) >= 30 and (rr - bb) >= 30:
                        return True
    except Exception:
        pass

    return False


# -------------------------
# Text normalization
# -------------------------
def normalize_text(s: Optional[str]) -> str:
    if s is None:
        return ""
    s = str(s)
    s = s.replace('\u2013', '-').replace('\u2014', '-')
    s = re.sub(r'[^\w\s\#\%\/\-\(\)]', ' ', s)
    s = re.sub(r'\s+', ' ', s).strip()
    return s

def normalize_header_text(s: Optional[str]) -> str:
    if not s:
        return ""
    t = re.sub(r'\([^)]*\)', ' ', s)
    t = t.replace("/", " ").replace("\\", " ")
    t = re.sub(r'[^\w\s\#\%]', ' ', t)
    t = re.sub(r'\s+', ' ', t).strip().lower()
    t = t.replace('registrationno', 'registration number')
    t = t.replace('registrationnumber', 'registration number')
    t = t.replace('sub-contractor', 'sub contractor')
    t = t.replace('sub contracted', 'sub contractor')
    return t.strip()


# -------------------------
# docx helpers
# -------------------------
def get_clean_text(cell) -> str:
    out = []
    for paragraph in cell.paragraphs:
        out.append("".join(run.text for run in paragraph.runs))
    return " ".join(out).strip()

def has_red_text(cell) -> bool:
    for paragraph in cell.paragraphs:
        for run in paragraph.runs:
            try:
                if is_red_font(run) and run.text.strip():
                    return True
            except Exception:
                continue
    return False

def extract_red_text_segments(cell):
    segments = []
    for p_idx, paragraph in enumerate(cell.paragraphs):
        current_text = ""
        current_runs = []
        for r_idx, run in enumerate(paragraph.runs):
            if is_red_font(run) and run.text.strip():
                current_text += run.text
                current_runs.append((p_idx, r_idx, run))
            else:
                if current_runs:
                    segments.append({'text': current_text, 'runs': current_runs.copy(), 'paragraph_idx': p_idx})
                    current_text = ""
                    current_runs = []
        if current_runs:
            segments.append({'text': current_text, 'runs': current_runs.copy(), 'paragraph_idx': p_idx})
    return segments

def replace_red_text_in_cell(cell, replacement_text: str) -> int:
    segments = extract_red_text_segments(cell)
    if not segments:
        return 0
    first = segments[0]
    first_run = first['runs'][0][2]
    first_run.text = replacement_text
    try:
        first_run.font.color.rgb = RGBColor(0, 0, 0)
    except Exception:
        pass
    for _, _, run in first['runs'][1:]:
        run.text = ''
    for seg in segments[1:]:
        for _, _, run in seg['runs']:
            run.text = ''
    return 1


# -------------------------
# JSON helpers & matching
# -------------------------
def flatten_json(y: Dict[str, Any], prefix: str = '') -> Dict[str, Any]:
    out = {}
    for key, val in y.items():
        new_key = f"{prefix}.{key}" if prefix else key
        if isinstance(val, dict):
            out.update(flatten_json(val, new_key))
        else:
            out[new_key] = val
            out[key] = val
    return out

def find_matching_json_key_and_value(field_name: str, flat_json: Dict[str, Any]) -> Optional[Tuple[str, Any]]:
    if not field_name:
        return None
    fn = field_name.strip()
    if fn in flat_json:
        return fn, flat_json[fn]
    for k in flat_json:
        if k.lower() == fn.lower():
            return k, flat_json[k]
    clean_field = normalize_header_text(fn)
    for k in flat_json:
        if normalize_header_text(k) == clean_field:
            return k, flat_json[k]
    field_tokens = set(w for w in re.findall(r'\b\w+\b', fn.lower()) if len(w) > 2)
    if not field_tokens:
        return None
    best = None
    best_score = 0.0
    for k, v in flat_json.items():
        key_tokens = set(w for w in re.findall(r'\b\w+\b', k.lower()) if len(w) > 2)
        if not key_tokens:
            continue
        common = field_tokens.intersection(key_tokens)
        if common:
            sim = len(common) / len(field_tokens.union(key_tokens))
            cov = len(common) / len(field_tokens)
            score = (0.6 * sim) + (0.4 * cov)
        else:
            nf = normalize_header_text(fn)
            nk = normalize_header_text(k)
            if nf and nk and (nf in nk or nk in nf):
                substring_score = min(len(nf), len(nk)) / max(len(nf), len(nk))
                score = 0.4 * substring_score
            else:
                score = 0.0
        if score > best_score:
            best_score = score
            best = (k, v)
    if best and best_score >= 0.35:
        return best[0], best[1]
    return None

# -------------------------
# Small safety helpers
# -------------------------
_POSITION_KEY_BLACKLIST = ["attendance", "attendance list", "attendees", "attendance list (names and position titles)"]

def key_is_forbidden_for_position(key: Optional[str]) -> bool:
    if not key:
        return False
    lk = key.lower()
    for b in _POSITION_KEY_BLACKLIST:
        if b in lk:
            return True
    return False