PDF-Data_Extractor / extract_red_text.py
Shami96's picture
Update extract_red_text.py
60df8d0 verified
raw
history blame
19.4 kB
#!/usr/bin/env python3
import re
import json
import sys
from docx import Document
from docx.oxml.ns import qn
from master_key import TABLE_SCHEMAS, HEADING_PATTERNS, PARAGRAPH_PATTERNS
def is_red_font(run):
"""Enhanced red font detection with better color checking"""
col = run.font.color
if col and col.rgb:
r, g, b = col.rgb
if r > 150 and g < 100 and b < 100 and (r-g) > 30 and (r-b) > 30:
return True
rPr = getattr(run._element, "rPr", None)
if rPr is not None:
clr = rPr.find(qn('w:color'))
if clr is not None:
val = clr.get(qn('w:val'))
if val and re.fullmatch(r"[0-9A-Fa-f]{6}", val):
rr, gg, bb = int(val[:2], 16), int(val[2:4], 16), int(val[4:], 16)
if rr > 150 and gg < 100 and bb < 100 and (rr-gg) > 30 and (rr-bb) > 30:
return True
return False
def _prev_para_text(tbl):
"""Get text from previous paragraph before table"""
prev = tbl._tbl.getprevious()
while prev is not None and not prev.tag.endswith("}p"):
prev = prev.getprevious()
if prev is None:
return ""
return "".join(node.text for node in prev.iter() if node.tag.endswith("}t") and node.text).strip()
def normalize_text(text):
"""Normalize text for better matching"""
return re.sub(r'\s+', ' ', text.strip())
def fuzzy_match_heading(heading, patterns):
"""Check if heading matches any pattern with fuzzy matching"""
heading_norm = normalize_text(heading.upper())
for pattern in patterns:
if re.search(pattern, heading_norm, re.IGNORECASE):
return True
return False
def get_table_context(tbl):
"""Get comprehensive context information for table"""
heading = normalize_text(_prev_para_text(tbl))
headers = [normalize_text(c.text) for c in tbl.rows[0].cells if c.text.strip()]
col0 = [normalize_text(r.cells[0].text) for r in tbl.rows if r.cells[0].text.strip()]
first_cell = normalize_text(tbl.rows[0].cells[0].text) if tbl.rows else ""
all_cells = []
for row in tbl.rows:
for cell in row.cells:
text = normalize_text(cell.text)
if text:
all_cells.append(text)
return {
'heading': heading,
'headers': headers,
'col0': col0,
'first_cell': first_cell,
'all_cells': all_cells,
'num_rows': len(tbl.rows),
'num_cols': len(tbl.rows[0].cells) if tbl.rows else 0
}
def calculate_schema_match_score(schema_name, spec, context):
"""Enhanced calculate match score - IMPROVED for Vehicle Registration tables"""
score = 0
reasons = []
# 🎯 VEHICLE REGISTRATION BOOST
if "Vehicle Registration" in schema_name:
vehicle_keywords = ["registration", "vehicle", "sub-contractor", "weight verification", "rfs suspension"]
table_text = " ".join(context['headers']).lower() + " " + context['heading'].lower()
keyword_matches = sum(1 for keyword in vehicle_keywords if keyword in table_text)
if keyword_matches >= 2:
score += 150 # Very high boost for vehicle tables
reasons.append(f"Vehicle Registration keywords: {keyword_matches}/5")
elif keyword_matches >= 1:
score += 75 # Medium boost
reasons.append(f"Some Vehicle Registration keywords: {keyword_matches}/5")
# 🎯 SUMMARY TABLE BOOST (existing logic)
if "Summary" in schema_name and "details" in " ".join(context['headers']).lower():
score += 100
reasons.append(f"Summary schema with DETAILS column - perfect match")
if "Summary" not in schema_name and "details" in " ".join(context['headers']).lower():
score -= 75
reasons.append(f"Non-summary schema penalized for DETAILS column presence")
# Context exclusions
if spec.get("context_exclusions"):
table_text = " ".join(context['headers']).lower() + " " + context['heading'].lower()
for exclusion in spec["context_exclusions"]:
if exclusion.lower() in table_text:
score -= 50
reasons.append(f"Context exclusion penalty: '{exclusion}' found")
# Context keywords
if spec.get("context_keywords"):
table_text = " ".join(context['headers']).lower() + " " + context['heading'].lower()
keyword_matches = 0
for keyword in spec["context_keywords"]:
if keyword.lower() in table_text:
keyword_matches += 1
if keyword_matches > 0:
score += keyword_matches * 15
reasons.append(f"Context keyword matches: {keyword_matches}/{len(spec['context_keywords'])}")
# Direct first cell match
if context['first_cell'] and context['first_cell'].upper() == schema_name.upper():
score += 100
reasons.append(f"Direct first cell match: '{context['first_cell']}'")
# Heading pattern matching
if spec.get("headings"):
for h in spec["headings"]:
if fuzzy_match_heading(context['heading'], [h["text"]]):
score += 50
reasons.append(f"Heading match: '{context['heading']}'")
break
# Column header matching
if spec.get("columns"):
cols = [normalize_text(col) for col in spec["columns"]]
matches = 0
for col in cols:
if any(col.upper() in h.upper() for h in context['headers']):
matches += 1
if matches == len(cols):
score += 60
reasons.append(f"All column headers match: {cols}")
elif matches > 0:
score += matches * 20
reasons.append(f"Partial column matches: {matches}/{len(cols)}")
# Label matching for left-oriented tables
if spec.get("orientation") == "left":
labels = [normalize_text(lbl) for lbl in spec["labels"]]
matches = 0
for lbl in labels:
if any(lbl.upper() in c.upper() or c.upper() in lbl.upper() for c in context['col0']):
matches += 1
if matches > 0:
score += (matches / len(labels)) * 30
reasons.append(f"Left orientation label matches: {matches}/{len(labels)}")
# 🎯 ENHANCED Label matching for row1-oriented tables (Vehicle Registration)
elif spec.get("orientation") == "row1":
labels = [normalize_text(lbl) for lbl in spec["labels"]]
matches = 0
for lbl in labels:
# More flexible matching for vehicle tables
if any(lbl.upper() in h.upper() or h.upper() in lbl.upper() for h in context['headers']):
matches += 1
# Also check for partial keyword matches
elif any(word.upper() in " ".join(context['headers']).upper() for word in lbl.split() if len(word) > 3):
matches += 0.5 # Partial credit
if matches > 0:
score += (matches / len(labels)) * 40 # Higher weight for row1 tables
reasons.append(f"Row1 orientation header matches: {matches}/{len(labels)}")
# Special handling for Declaration tables (existing logic)
if schema_name == "Operator Declaration" and context['first_cell'].upper() == "PRINT NAME":
if "OPERATOR DECLARATION" in context['heading'].upper():
score += 80
reasons.append("Operator Declaration context match")
elif any("MANAGER" in cell.upper() for cell in context['all_cells']):
score += 60
reasons.append("Manager found in cells (likely Operator Declaration)")
if schema_name == "NHVAS Approved Auditor Declaration" and context['first_cell'].upper() == "PRINT NAME":
if any("MANAGER" in cell.upper() for cell in context['all_cells']):
score -= 50
reasons.append("Penalty: Manager found (not auditor)")
return score, reasons
def match_table_schema(tbl):
"""Improved table schema matching with scoring system"""
context = get_table_context(tbl)
best_match = None
best_score = 0
for name, spec in TABLE_SCHEMAS.items():
score, reasons = calculate_schema_match_score(name, spec, context)
if score > best_score:
best_score = score
best_match = name
if best_score >= 20:
return best_match
return None
def check_multi_schema_table(tbl):
"""Check if table contains multiple schemas and split appropriately"""
context = get_table_context(tbl)
operator_labels = ["Operator name (Legal entity)", "NHVAS Accreditation No.", "Registered trading name/s",
"Australian Company Number", "NHVAS Manual"]
contact_labels = ["Operator business address", "Operator Postal address", "Email address", "Operator Telephone Number"]
has_operator = any(any(op_lbl.upper() in cell.upper() for op_lbl in operator_labels) for cell in context['col0'])
has_contact = any(any(cont_lbl.upper() in cell.upper() for cont_lbl in contact_labels) for cell in context['col0'])
if has_operator and has_contact:
return ["Operator Information", "Operator contact details"]
return None
def extract_multi_schema_table(tbl, schemas):
"""Extract data from table with multiple schemas"""
result = {}
for schema_name in schemas:
if schema_name not in TABLE_SCHEMAS:
continue
spec = TABLE_SCHEMAS[schema_name]
schema_data = {}
for ri, row in enumerate(tbl.rows):
if ri == 0:
continue
row_label = normalize_text(row.cells[0].text)
belongs_to_schema = False
matched_label = None
for spec_label in spec["labels"]:
spec_norm = normalize_text(spec_label).upper()
row_norm = row_label.upper()
if spec_norm == row_norm or spec_norm in row_norm or row_norm in spec_norm:
belongs_to_schema = True
matched_label = spec_label
break
if not belongs_to_schema:
continue
for ci, cell in enumerate(row.cells):
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
if red_txt:
if matched_label not in schema_data:
schema_data[matched_label] = []
if red_txt not in schema_data[matched_label]:
schema_data[matched_label].append(red_txt)
if schema_data:
result[schema_name] = schema_data
return result
def extract_table_data(tbl, schema_name, spec):
"""Extract red text data from table based on schema - ENHANCED for Vehicle Registration"""
# 🎯 SPECIAL HANDLING for Vehicle Registration tables
if "Vehicle Registration" in schema_name:
print(f" 🚗 EXTRACTION FIX: Processing Vehicle Registration table")
labels = spec["labels"]
collected = {lbl: [] for lbl in labels}
seen = {lbl: set() for lbl in labels}
# For Vehicle Registration, orientation is "row1" - headers in first row
if len(tbl.rows) < 2:
print(f" ❌ Vehicle table has less than 2 rows")
return {}
# Map header cells to labels
header_row = tbl.rows[0]
column_mapping = {}
print(f" 📋 Mapping {len(header_row.cells)} header cells to labels")
for col_idx, cell in enumerate(header_row.cells):
header_text = normalize_text(cell.text).strip()
if not header_text:
continue
print(f" Column {col_idx}: '{header_text}'")
# Find best matching label
best_match = None
best_score = 0
for label in labels:
# Direct match
if header_text.upper() == label.upper():
best_match = label
best_score = 1.0
break
# Partial keyword matching
header_words = set(word.upper() for word in header_text.split() if len(word) > 2)
label_words = set(word.upper() for word in label.split() if len(word) > 2)
if header_words and label_words:
common_words = header_words.intersection(label_words)
if common_words:
score = len(common_words) / max(len(header_words), len(label_words))
if score > best_score and score >= 0.4: # Lower threshold for vehicle tables
best_score = score
best_match = label
if best_match:
column_mapping[col_idx] = best_match
print(f" ✅ Mapped to: '{best_match}' (score: {best_score:.2f})")
else:
print(f" ⚠️ No mapping found for '{header_text}'")
print(f" 📊 Total column mappings: {len(column_mapping)}")
# Extract red text from data rows (skip header)
for row_idx in range(1, len(tbl.rows)):
row = tbl.rows[row_idx]
print(f" 📌 Processing data row {row_idx}")
for col_idx, cell in enumerate(row.cells):
if col_idx in column_mapping:
label = column_mapping[col_idx]
# Extract red text
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
if red_txt:
print(f" 🔴 Found red text in '{label}': '{red_txt}'")
if red_txt not in seen[label]:
seen[label].add(red_txt)
collected[label].append(red_txt)
# Return only non-empty collections
result = {k: v for k, v in collected.items() if v}
print(f" ✅ Vehicle Registration extracted: {len(result)} columns with data")
return result
# 🎯 ORIGINAL CODE for all other tables (unchanged)
labels = spec["labels"] + [schema_name]
collected = {lbl: [] for lbl in labels}
seen = {lbl: set() for lbl in labels}
by_col = (spec["orientation"] == "row1")
start_row = 1 if by_col else 0
rows = tbl.rows[start_row:]
for ri, row in enumerate(rows):
for ci, cell in enumerate(row.cells):
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
if not red_txt:
continue
if by_col:
if ci < len(spec["labels"]):
lbl = spec["labels"][ci]
else:
lbl = schema_name
else:
raw_label = normalize_text(row.cells[0].text)
lbl = None
for spec_label in spec["labels"]:
if normalize_text(spec_label).upper() == raw_label.upper():
lbl = spec_label
break
if not lbl:
for spec_label in spec["labels"]:
spec_norm = normalize_text(spec_label).upper()
raw_norm = raw_label.upper()
if spec_norm in raw_norm or raw_norm in spec_norm:
lbl = spec_label
break
if not lbl:
lbl = schema_name
if red_txt not in seen[lbl]:
seen[lbl].add(red_txt)
collected[lbl].append(red_txt)
return {k: v for k, v in collected.items() if v}
def extract_red_text(input_doc):
# input_doc: docx.Document object or file path
if isinstance(input_doc, str):
doc = Document(input_doc)
else:
doc = input_doc
out = {}
table_count = 0
for tbl in doc.tables:
table_count += 1
multi_schemas = check_multi_schema_table(tbl)
if multi_schemas:
multi_data = extract_multi_schema_table(tbl, multi_schemas)
for schema_name, schema_data in multi_data.items():
if schema_data:
if schema_name in out:
for k, v in schema_data.items():
if k in out[schema_name]:
out[schema_name][k].extend(v)
else:
out[schema_name][k] = v
else:
out[schema_name] = schema_data
continue
schema = match_table_schema(tbl)
if not schema:
continue
spec = TABLE_SCHEMAS[schema]
data = extract_table_data(tbl, schema, spec)
if data:
if schema in out:
for k, v in data.items():
if k in out[schema]:
out[schema][k].extend(v)
else:
out[schema][k] = v
else:
out[schema] = data
paras = {}
for idx, para in enumerate(doc.paragraphs):
red_txt = "".join(r.text for r in para.runs if is_red_font(r)).strip()
if not red_txt:
continue
context = None
for j in range(idx-1, -1, -1):
txt = normalize_text(doc.paragraphs[j].text)
if txt:
all_patterns = HEADING_PATTERNS["main"] + HEADING_PATTERNS["sub"]
if any(re.search(p, txt, re.IGNORECASE) for p in all_patterns):
context = txt
break
if not context and re.fullmatch(PARAGRAPH_PATTERNS["date_line"], red_txt):
context = "Date"
if not context:
context = "(para)"
paras.setdefault(context, []).append(red_txt)
if paras:
out["paragraphs"] = paras
return out
def extract_red_text_filelike(input_file, output_file):
"""
Accepts:
input_file: file-like object (BytesIO/File) or path
output_file: file-like object (opened for writing text) or path
"""
if hasattr(input_file, "seek"):
input_file.seek(0)
doc = Document(input_file)
result = extract_red_text(doc)
if hasattr(output_file, "write"):
json.dump(result, output_file, indent=2, ensure_ascii=False)
output_file.flush()
else:
with open(output_file, "w", encoding="utf-8") as f:
json.dump(result, f, indent=2, ensure_ascii=False)
return result
if __name__ == "__main__":
# Support both script and app/file-like usage
if len(sys.argv) == 3:
input_docx = sys.argv[1]
output_json = sys.argv[2]
doc = Document(input_docx)
word_data = extract_red_text(doc)
with open(output_json, 'w', encoding='utf-8') as f:
json.dump(word_data, f, indent=2, ensure_ascii=False)
print(json.dumps(word_data, indent=2, ensure_ascii=False))
else:
print("To use as a module: extract_red_text_filelike(input_file, output_file)")