Spaces:
Running
Running
| #!/usr/bin/env python3 | |
| import re | |
| import json | |
| import sys | |
| from docx import Document | |
| from docx.oxml.ns import qn | |
| from master_key import TABLE_SCHEMAS, HEADING_PATTERNS, PARAGRAPH_PATTERNS | |
| def is_red_font(run): | |
| """Enhanced red font detection with better color checking""" | |
| col = run.font.color | |
| if col and col.rgb: | |
| r, g, b = col.rgb | |
| if r > 150 and g < 100 and b < 100 and (r-g) > 30 and (r-b) > 30: | |
| return True | |
| rPr = getattr(run._element, "rPr", None) | |
| if rPr is not None: | |
| clr = rPr.find(qn('w:color')) | |
| if clr is not None: | |
| val = clr.get(qn('w:val')) | |
| if val and re.fullmatch(r"[0-9A-Fa-f]{6}", val): | |
| rr, gg, bb = int(val[:2], 16), int(val[2:4], 16), int(val[4:], 16) | |
| if rr > 150 and gg < 100 and bb < 100 and (rr-gg) > 30 and (rr-bb) > 30: | |
| return True | |
| return False | |
| def _prev_para_text(tbl): | |
| """Get text from previous paragraph before table""" | |
| prev = tbl._tbl.getprevious() | |
| while prev is not None and not prev.tag.endswith("}p"): | |
| prev = prev.getprevious() | |
| if prev is None: | |
| return "" | |
| return "".join(node.text for node in prev.iter() if node.tag.endswith("}t") and node.text).strip() | |
| def normalize_text(text): | |
| """Normalize text for better matching""" | |
| return re.sub(r'\s+', ' ', text.strip()) | |
| def fuzzy_match_heading(heading, patterns): | |
| """Check if heading matches any pattern with fuzzy matching""" | |
| heading_norm = normalize_text(heading.upper()) | |
| for pattern in patterns: | |
| if re.search(pattern, heading_norm, re.IGNORECASE): | |
| return True | |
| return False | |
| def get_table_context(tbl): | |
| """Get comprehensive context information for table""" | |
| heading = normalize_text(_prev_para_text(tbl)) | |
| headers = [normalize_text(c.text) for c in tbl.rows[0].cells if c.text.strip()] | |
| col0 = [normalize_text(r.cells[0].text) for r in tbl.rows if r.cells[0].text.strip()] | |
| first_cell = normalize_text(tbl.rows[0].cells[0].text) if tbl.rows else "" | |
| all_cells = [] | |
| for row in tbl.rows: | |
| for cell in row.cells: | |
| text = normalize_text(cell.text) | |
| if text: | |
| all_cells.append(text) | |
| return { | |
| 'heading': heading, | |
| 'headers': headers, | |
| 'col0': col0, | |
| 'first_cell': first_cell, | |
| 'all_cells': all_cells, | |
| 'num_rows': len(tbl.rows), | |
| 'num_cols': len(tbl.rows[0].cells) if tbl.rows else 0 | |
| } | |
| def calculate_schema_match_score(schema_name, spec, context): | |
| """Enhanced calculate match score - IMPROVED for Vehicle Registration tables""" | |
| score = 0 | |
| reasons = [] | |
| # 🎯 VEHICLE REGISTRATION BOOST | |
| if "Vehicle Registration" in schema_name: | |
| vehicle_keywords = ["registration", "vehicle", "sub-contractor", "weight verification", "rfs suspension"] | |
| table_text = " ".join(context['headers']).lower() + " " + context['heading'].lower() | |
| keyword_matches = sum(1 for keyword in vehicle_keywords if keyword in table_text) | |
| if keyword_matches >= 2: | |
| score += 150 # Very high boost for vehicle tables | |
| reasons.append(f"Vehicle Registration keywords: {keyword_matches}/5") | |
| elif keyword_matches >= 1: | |
| score += 75 # Medium boost | |
| reasons.append(f"Some Vehicle Registration keywords: {keyword_matches}/5") | |
| # 🎯 SUMMARY TABLE BOOST (existing logic) | |
| if "Summary" in schema_name and "details" in " ".join(context['headers']).lower(): | |
| score += 100 | |
| reasons.append(f"Summary schema with DETAILS column - perfect match") | |
| if "Summary" not in schema_name and "details" in " ".join(context['headers']).lower(): | |
| score -= 75 | |
| reasons.append(f"Non-summary schema penalized for DETAILS column presence") | |
| # Context exclusions | |
| if spec.get("context_exclusions"): | |
| table_text = " ".join(context['headers']).lower() + " " + context['heading'].lower() | |
| for exclusion in spec["context_exclusions"]: | |
| if exclusion.lower() in table_text: | |
| score -= 50 | |
| reasons.append(f"Context exclusion penalty: '{exclusion}' found") | |
| # Context keywords | |
| if spec.get("context_keywords"): | |
| table_text = " ".join(context['headers']).lower() + " " + context['heading'].lower() | |
| keyword_matches = 0 | |
| for keyword in spec["context_keywords"]: | |
| if keyword.lower() in table_text: | |
| keyword_matches += 1 | |
| if keyword_matches > 0: | |
| score += keyword_matches * 15 | |
| reasons.append(f"Context keyword matches: {keyword_matches}/{len(spec['context_keywords'])}") | |
| # Direct first cell match | |
| if context['first_cell'] and context['first_cell'].upper() == schema_name.upper(): | |
| score += 100 | |
| reasons.append(f"Direct first cell match: '{context['first_cell']}'") | |
| # Heading pattern matching | |
| if spec.get("headings"): | |
| for h in spec["headings"]: | |
| if fuzzy_match_heading(context['heading'], [h["text"]]): | |
| score += 50 | |
| reasons.append(f"Heading match: '{context['heading']}'") | |
| break | |
| # Column header matching | |
| if spec.get("columns"): | |
| cols = [normalize_text(col) for col in spec["columns"]] | |
| matches = 0 | |
| for col in cols: | |
| if any(col.upper() in h.upper() for h in context['headers']): | |
| matches += 1 | |
| if matches == len(cols): | |
| score += 60 | |
| reasons.append(f"All column headers match: {cols}") | |
| elif matches > 0: | |
| score += matches * 20 | |
| reasons.append(f"Partial column matches: {matches}/{len(cols)}") | |
| # Label matching for left-oriented tables | |
| if spec.get("orientation") == "left": | |
| labels = [normalize_text(lbl) for lbl in spec["labels"]] | |
| matches = 0 | |
| for lbl in labels: | |
| if any(lbl.upper() in c.upper() or c.upper() in lbl.upper() for c in context['col0']): | |
| matches += 1 | |
| if matches > 0: | |
| score += (matches / len(labels)) * 30 | |
| reasons.append(f"Left orientation label matches: {matches}/{len(labels)}") | |
| # 🎯 ENHANCED Label matching for row1-oriented tables (Vehicle Registration) | |
| elif spec.get("orientation") == "row1": | |
| labels = [normalize_text(lbl) for lbl in spec["labels"]] | |
| matches = 0 | |
| for lbl in labels: | |
| # More flexible matching for vehicle tables | |
| if any(lbl.upper() in h.upper() or h.upper() in lbl.upper() for h in context['headers']): | |
| matches += 1 | |
| # Also check for partial keyword matches | |
| elif any(word.upper() in " ".join(context['headers']).upper() for word in lbl.split() if len(word) > 3): | |
| matches += 0.5 # Partial credit | |
| if matches > 0: | |
| score += (matches / len(labels)) * 40 # Higher weight for row1 tables | |
| reasons.append(f"Row1 orientation header matches: {matches}/{len(labels)}") | |
| # Special handling for Declaration tables (existing logic) | |
| if schema_name == "Operator Declaration" and context['first_cell'].upper() == "PRINT NAME": | |
| if "OPERATOR DECLARATION" in context['heading'].upper(): | |
| score += 80 | |
| reasons.append("Operator Declaration context match") | |
| elif any("MANAGER" in cell.upper() for cell in context['all_cells']): | |
| score += 60 | |
| reasons.append("Manager found in cells (likely Operator Declaration)") | |
| if schema_name == "NHVAS Approved Auditor Declaration" and context['first_cell'].upper() == "PRINT NAME": | |
| if any("MANAGER" in cell.upper() for cell in context['all_cells']): | |
| score -= 50 | |
| reasons.append("Penalty: Manager found (not auditor)") | |
| return score, reasons | |
| def match_table_schema(tbl): | |
| """Improved table schema matching with scoring system""" | |
| context = get_table_context(tbl) | |
| best_match = None | |
| best_score = 0 | |
| for name, spec in TABLE_SCHEMAS.items(): | |
| score, reasons = calculate_schema_match_score(name, spec, context) | |
| if score > best_score: | |
| best_score = score | |
| best_match = name | |
| if best_score >= 20: | |
| return best_match | |
| return None | |
| def check_multi_schema_table(tbl): | |
| """Check if table contains multiple schemas and split appropriately""" | |
| context = get_table_context(tbl) | |
| operator_labels = ["Operator name (Legal entity)", "NHVAS Accreditation No.", "Registered trading name/s", | |
| "Australian Company Number", "NHVAS Manual"] | |
| contact_labels = ["Operator business address", "Operator Postal address", "Email address", "Operator Telephone Number"] | |
| has_operator = any(any(op_lbl.upper() in cell.upper() for op_lbl in operator_labels) for cell in context['col0']) | |
| has_contact = any(any(cont_lbl.upper() in cell.upper() for cont_lbl in contact_labels) for cell in context['col0']) | |
| if has_operator and has_contact: | |
| return ["Operator Information", "Operator contact details"] | |
| return None | |
| def extract_multi_schema_table(tbl, schemas): | |
| """Extract data from table with multiple schemas""" | |
| result = {} | |
| for schema_name in schemas: | |
| if schema_name not in TABLE_SCHEMAS: | |
| continue | |
| spec = TABLE_SCHEMAS[schema_name] | |
| schema_data = {} | |
| for ri, row in enumerate(tbl.rows): | |
| if ri == 0: | |
| continue | |
| row_label = normalize_text(row.cells[0].text) | |
| belongs_to_schema = False | |
| matched_label = None | |
| for spec_label in spec["labels"]: | |
| spec_norm = normalize_text(spec_label).upper() | |
| row_norm = row_label.upper() | |
| if spec_norm == row_norm or spec_norm in row_norm or row_norm in spec_norm: | |
| belongs_to_schema = True | |
| matched_label = spec_label | |
| break | |
| if not belongs_to_schema: | |
| continue | |
| for ci, cell in enumerate(row.cells): | |
| red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip() | |
| if red_txt: | |
| if matched_label not in schema_data: | |
| schema_data[matched_label] = [] | |
| if red_txt not in schema_data[matched_label]: | |
| schema_data[matched_label].append(red_txt) | |
| if schema_data: | |
| result[schema_name] = schema_data | |
| return result | |
| def extract_table_data(tbl, schema_name, spec): | |
| """Extract red text data from table based on schema - ENHANCED for Vehicle Registration""" | |
| # 🎯 SPECIAL HANDLING for Vehicle Registration tables | |
| if "Vehicle Registration" in schema_name: | |
| print(f" 🚗 EXTRACTION FIX: Processing Vehicle Registration table") | |
| labels = spec["labels"] | |
| collected = {lbl: [] for lbl in labels} | |
| seen = {lbl: set() for lbl in labels} | |
| # For Vehicle Registration, orientation is "row1" - headers in first row | |
| if len(tbl.rows) < 2: | |
| print(f" ❌ Vehicle table has less than 2 rows") | |
| return {} | |
| # Map header cells to labels | |
| header_row = tbl.rows[0] | |
| column_mapping = {} | |
| print(f" 📋 Mapping {len(header_row.cells)} header cells to labels") | |
| for col_idx, cell in enumerate(header_row.cells): | |
| header_text = normalize_text(cell.text).strip() | |
| if not header_text: | |
| continue | |
| print(f" Column {col_idx}: '{header_text}'") | |
| # Find best matching label | |
| best_match = None | |
| best_score = 0 | |
| for label in labels: | |
| # Direct match | |
| if header_text.upper() == label.upper(): | |
| best_match = label | |
| best_score = 1.0 | |
| break | |
| # Partial keyword matching | |
| header_words = set(word.upper() for word in header_text.split() if len(word) > 2) | |
| label_words = set(word.upper() for word in label.split() if len(word) > 2) | |
| if header_words and label_words: | |
| common_words = header_words.intersection(label_words) | |
| if common_words: | |
| score = len(common_words) / max(len(header_words), len(label_words)) | |
| if score > best_score and score >= 0.4: # Lower threshold for vehicle tables | |
| best_score = score | |
| best_match = label | |
| if best_match: | |
| column_mapping[col_idx] = best_match | |
| print(f" ✅ Mapped to: '{best_match}' (score: {best_score:.2f})") | |
| else: | |
| print(f" ⚠️ No mapping found for '{header_text}'") | |
| print(f" 📊 Total column mappings: {len(column_mapping)}") | |
| # Extract red text from data rows (skip header) | |
| for row_idx in range(1, len(tbl.rows)): | |
| row = tbl.rows[row_idx] | |
| print(f" 📌 Processing data row {row_idx}") | |
| for col_idx, cell in enumerate(row.cells): | |
| if col_idx in column_mapping: | |
| label = column_mapping[col_idx] | |
| # Extract red text | |
| red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip() | |
| if red_txt: | |
| print(f" 🔴 Found red text in '{label}': '{red_txt}'") | |
| if red_txt not in seen[label]: | |
| seen[label].add(red_txt) | |
| collected[label].append(red_txt) | |
| # Return only non-empty collections | |
| result = {k: v for k, v in collected.items() if v} | |
| print(f" ✅ Vehicle Registration extracted: {len(result)} columns with data") | |
| return result | |
| # 🎯 ORIGINAL CODE for all other tables (unchanged) | |
| labels = spec["labels"] + [schema_name] | |
| collected = {lbl: [] for lbl in labels} | |
| seen = {lbl: set() for lbl in labels} | |
| by_col = (spec["orientation"] == "row1") | |
| start_row = 1 if by_col else 0 | |
| rows = tbl.rows[start_row:] | |
| for ri, row in enumerate(rows): | |
| for ci, cell in enumerate(row.cells): | |
| red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip() | |
| if not red_txt: | |
| continue | |
| if by_col: | |
| if ci < len(spec["labels"]): | |
| lbl = spec["labels"][ci] | |
| else: | |
| lbl = schema_name | |
| else: | |
| raw_label = normalize_text(row.cells[0].text) | |
| lbl = None | |
| for spec_label in spec["labels"]: | |
| if normalize_text(spec_label).upper() == raw_label.upper(): | |
| lbl = spec_label | |
| break | |
| if not lbl: | |
| for spec_label in spec["labels"]: | |
| spec_norm = normalize_text(spec_label).upper() | |
| raw_norm = raw_label.upper() | |
| if spec_norm in raw_norm or raw_norm in spec_norm: | |
| lbl = spec_label | |
| break | |
| if not lbl: | |
| lbl = schema_name | |
| if red_txt not in seen[lbl]: | |
| seen[lbl].add(red_txt) | |
| collected[lbl].append(red_txt) | |
| return {k: v for k, v in collected.items() if v} | |
| def extract_red_text(input_doc): | |
| # input_doc: docx.Document object or file path | |
| if isinstance(input_doc, str): | |
| doc = Document(input_doc) | |
| else: | |
| doc = input_doc | |
| out = {} | |
| table_count = 0 | |
| for tbl in doc.tables: | |
| table_count += 1 | |
| multi_schemas = check_multi_schema_table(tbl) | |
| if multi_schemas: | |
| multi_data = extract_multi_schema_table(tbl, multi_schemas) | |
| for schema_name, schema_data in multi_data.items(): | |
| if schema_data: | |
| if schema_name in out: | |
| for k, v in schema_data.items(): | |
| if k in out[schema_name]: | |
| out[schema_name][k].extend(v) | |
| else: | |
| out[schema_name][k] = v | |
| else: | |
| out[schema_name] = schema_data | |
| continue | |
| schema = match_table_schema(tbl) | |
| if not schema: | |
| continue | |
| spec = TABLE_SCHEMAS[schema] | |
| data = extract_table_data(tbl, schema, spec) | |
| if data: | |
| if schema in out: | |
| for k, v in data.items(): | |
| if k in out[schema]: | |
| out[schema][k].extend(v) | |
| else: | |
| out[schema][k] = v | |
| else: | |
| out[schema] = data | |
| paras = {} | |
| for idx, para in enumerate(doc.paragraphs): | |
| red_txt = "".join(r.text for r in para.runs if is_red_font(r)).strip() | |
| if not red_txt: | |
| continue | |
| context = None | |
| for j in range(idx-1, -1, -1): | |
| txt = normalize_text(doc.paragraphs[j].text) | |
| if txt: | |
| all_patterns = HEADING_PATTERNS["main"] + HEADING_PATTERNS["sub"] | |
| if any(re.search(p, txt, re.IGNORECASE) for p in all_patterns): | |
| context = txt | |
| break | |
| if not context and re.fullmatch(PARAGRAPH_PATTERNS["date_line"], red_txt): | |
| context = "Date" | |
| if not context: | |
| context = "(para)" | |
| paras.setdefault(context, []).append(red_txt) | |
| if paras: | |
| out["paragraphs"] = paras | |
| return out | |
| def extract_red_text_filelike(input_file, output_file): | |
| """ | |
| Accepts: | |
| input_file: file-like object (BytesIO/File) or path | |
| output_file: file-like object (opened for writing text) or path | |
| """ | |
| if hasattr(input_file, "seek"): | |
| input_file.seek(0) | |
| doc = Document(input_file) | |
| result = extract_red_text(doc) | |
| if hasattr(output_file, "write"): | |
| json.dump(result, output_file, indent=2, ensure_ascii=False) | |
| output_file.flush() | |
| else: | |
| with open(output_file, "w", encoding="utf-8") as f: | |
| json.dump(result, f, indent=2, ensure_ascii=False) | |
| return result | |
| if __name__ == "__main__": | |
| # Support both script and app/file-like usage | |
| if len(sys.argv) == 3: | |
| input_docx = sys.argv[1] | |
| output_json = sys.argv[2] | |
| doc = Document(input_docx) | |
| word_data = extract_red_text(doc) | |
| with open(output_json, 'w', encoding='utf-8') as f: | |
| json.dump(word_data, f, indent=2, ensure_ascii=False) | |
| print(json.dumps(word_data, indent=2, ensure_ascii=False)) | |
| else: | |
| print("To use as a module: extract_red_text_filelike(input_file, output_file)") |