PDF-Data_Extractor / word_extractor.py
Shami96's picture
Rename word_updater.py to word_extractor.py
88a026a verified
raw
history blame
1.99 kB
# word_extractor.py
from docx import Document
from docx.shared import RGBColor
from collections import defaultdict
from typing import List, Dict
def is_red_font(run) -> bool:
if run.font.color and run.font.color.rgb:
rgb = run.font.color.rgb
r, g, b = rgb[0], rgb[1], rgb[2]
return r > 150 and g < 100 and b < 100
return False
def get_full_text_if_red(para):
buffer = ""
collecting = False
red_texts = []
for run in para.runs:
if is_red_font(run):
buffer += run.text
collecting = True
elif collecting:
red_texts.append(buffer.strip())
buffer = ""
collecting = False
if buffer:
red_texts.append(buffer.strip())
return red_texts
def extract_red_text_with_labels(doc_path: str) -> Dict[str, List[str]]:
document = Document(doc_path)
results = defaultdict(list)
for para in document.paragraphs:
red_texts = get_full_text_if_red(para)
for text in red_texts:
if text.strip():
results["Unlabeled"].append(text)
for table_idx, table in enumerate(document.tables):
for row_idx, row in enumerate(table.rows):
cells = row.cells
if len(cells) >= 2:
label = cells[0].text.strip().replace(":", "").replace("\n", " ")
values = []
for para in cells[1].paragraphs:
values += get_full_text_if_red(para)
if values:
clean_label = label if label else f"Table_{table_idx+1}_Row_{row_idx+1}"
for v in values:
results[clean_label].append(v)
elif len(cells) == 1:
for para in cells[0].paragraphs:
red_texts = get_full_text_if_red(para)
for text in red_texts:
results[f"Single_Column_Table_{table_idx+1}"].append(text)
return results