Spaces:
Running
Running
| import gradio as gr | |
| import tempfile | |
| import os | |
| import shutil | |
| import subprocess | |
| def process_files(pdf_file, word_file): | |
| # Create a unique temporary directory for this run | |
| temp_dir = tempfile.mkdtemp(prefix="hf_redtext_") | |
| # Define standard filenames for use in the pipeline | |
| pdf_path = os.path.join(temp_dir, "input.pdf") | |
| word_path = os.path.join(temp_dir, "input.docx") | |
| pdf_txt_path = os.path.join(temp_dir, "pdf_data.txt") | |
| word_json_path = os.path.join(temp_dir, "word_data.json") | |
| updated_json_path = os.path.join(temp_dir, "updated_word_data.json") | |
| final_docx_path = os.path.join(temp_dir, "updated.docx") | |
| # Copy the uploaded files to the temp directory | |
| shutil.copy(pdf_file, pdf_path) | |
| shutil.copy(word_file, word_path) | |
| # Step 1: Extract text from the PDF | |
| subprocess.run(["python", "extract_pdf_data.py", pdf_path, pdf_txt_path], check=True) | |
| # Step 2: Extract red text from the Word document | |
| subprocess.run(["python", "extract_red_text.py", word_path, word_json_path], check=True) | |
| # Step 3: Update the Word JSON using the PDF text (calls OpenAI) | |
| subprocess.run(["python", "update_docx_with_pdf.py", word_json_path, pdf_txt_path, updated_json_path], check=True) | |
| # Step 4: Apply the updated JSON to the Word doc to create the final output | |
| subprocess.run(["python", "updated_word.py", word_path, updated_json_path, final_docx_path], check=True) | |
| # Return the final .docx file | |
| return final_docx_path | |
| iface = gr.Interface( | |
| fn=process_files, | |
| inputs=[ | |
| gr.File(label="Upload PDF File", type="filepath"), | |
| gr.File(label="Upload Word File", type="filepath") | |
| ], | |
| outputs=gr.File(label="Download Updated Word File"), | |
| title="Red Text Replacer", | |
| description="Upload a PDF and Word document. Red-colored text in the Word doc will be replaced by matching content from the PDF." | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch() |