Spaces:
Running
Running
Update extract_red_text.py
Browse files- extract_red_text.py +288 -312
extract_red_text.py
CHANGED
|
@@ -1,335 +1,311 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
-
import re
|
|
|
|
|
|
|
| 3 |
from docx import Document
|
| 4 |
from docx.oxml.ns import qn
|
|
|
|
| 5 |
|
| 6 |
-
def is_red_font(run)
|
| 7 |
-
"""
|
| 8 |
col = run.font.color
|
| 9 |
if col and col.rgb:
|
| 10 |
-
r,g,b = col.rgb
|
| 11 |
-
if r>150 and g<100 and b<100 and (r-g)>30 and (r-b)>30:
|
| 12 |
return True
|
| 13 |
-
# fallback: raw <w:color w:val="XXXXXX"/>
|
| 14 |
rPr = getattr(run._element, "rPr", None)
|
| 15 |
if rPr is not None:
|
| 16 |
clr = rPr.find(qn('w:color'))
|
| 17 |
if clr is not None:
|
| 18 |
val = clr.get(qn('w:val'))
|
| 19 |
-
if re.fullmatch(r"[0-9A-Fa-f]{6}", val):
|
| 20 |
-
rr,gg,bb = int(val[:2],16), int(val[2:4],16), int(val[4:],16)
|
| 21 |
-
if rr>150 and gg<100 and bb<100 and (rr-gg)>30 and (rr-bb)>30:
|
| 22 |
return True
|
| 23 |
return False
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
"
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
"Location of audit",
|
| 46 |
-
"Auditor name",
|
| 47 |
-
"Audit Matrix Identifier (Name or Number)", # Corrected full label
|
| 48 |
-
"Auditor Exemplar Global Reg No.",
|
| 49 |
-
"expiry Date:",
|
| 50 |
-
"NHVR Auditor Registration Number",
|
| 51 |
-
"expiry Date:" # Note: Duplicate label, might need special handling
|
| 52 |
-
]
|
| 53 |
-
},
|
| 54 |
-
|
| 55 |
-
# Table 2: Operator Information (including contact details)
|
| 56 |
-
{
|
| 57 |
-
"name": "Operator Information",
|
| 58 |
-
"labels_on_left": True,
|
| 59 |
-
"skip_rows": ["Operator contact details", ""], # Skip subheading and blank rows
|
| 60 |
-
"labels": [
|
| 61 |
-
"Operator name (Legal entity)",
|
| 62 |
-
"NHVAS Accreditation No. (If applicable)",
|
| 63 |
-
"Registered trading name/s",
|
| 64 |
-
"Australian Company Number",
|
| 65 |
-
"NHVAS Manual (Policies and Procedures) developed by",
|
| 66 |
-
"Operator business address",
|
| 67 |
-
"Operator Postal address",
|
| 68 |
-
"Email address",
|
| 69 |
-
"Operator Telephone Number"
|
| 70 |
-
]
|
| 71 |
-
},
|
| 72 |
-
|
| 73 |
-
# Table 3: Attendance List
|
| 74 |
-
{
|
| 75 |
-
"name": "Attendance List (Names and Position Titles)",
|
| 76 |
-
"labels": ["Attendance List (Names and Position Titles)"]
|
| 77 |
-
},
|
| 78 |
-
|
| 79 |
-
# Table 4: Nature of the Operators Business
|
| 80 |
-
{
|
| 81 |
-
"name": "Nature of the Operators Business (Summary)",
|
| 82 |
-
"labels": [
|
| 83 |
-
"Nature of the Operators Business (Summary)",
|
| 84 |
-
"Accreditation Number:",
|
| 85 |
-
"Expiry Date:"
|
| 86 |
-
]
|
| 87 |
-
},
|
| 88 |
-
|
| 89 |
-
# Table 5: Accreditation Vehicle Summary
|
| 90 |
-
{
|
| 91 |
-
"name": "Accreditation Vehicle Summary",
|
| 92 |
-
"labels_on_left": True,
|
| 93 |
-
"labels": [
|
| 94 |
-
"Number of powered vehicles",
|
| 95 |
-
"Number of trailing vehicles"
|
| 96 |
-
]
|
| 97 |
-
},
|
| 98 |
-
|
| 99 |
-
# Table 6: Accreditation Driver Summary
|
| 100 |
-
{
|
| 101 |
-
"name": "Accreditation Driver Summary",
|
| 102 |
-
"labels_on_left": True,
|
| 103 |
-
"labels": [
|
| 104 |
-
"Number of drivers in BFM",
|
| 105 |
-
"Number of drivers in AFM"
|
| 106 |
-
]
|
| 107 |
-
},
|
| 108 |
-
|
| 109 |
-
# Table 7: Compliance Codes
|
| 110 |
-
{
|
| 111 |
-
"name": "Compliance Codes",
|
| 112 |
-
"labels_on_row1": True,
|
| 113 |
-
"labels": ["V", "SFI", "NA", "NC", "NAP"]
|
| 114 |
-
},
|
| 115 |
-
|
| 116 |
-
# Table 8: Corrective Action Request Identification
|
| 117 |
-
{
|
| 118 |
-
"name": "Corrective Action Request Identification",
|
| 119 |
-
"labels_on_row1": True,
|
| 120 |
-
"labels": ["Title", "Abbreviation", "Description"]
|
| 121 |
-
},
|
| 122 |
-
|
| 123 |
-
# Table 9: MASS MANAGEMENT (Standards 1-8)
|
| 124 |
-
{
|
| 125 |
-
"name": "MASS MANAGEMENT",
|
| 126 |
-
"labels_on_left": True,
|
| 127 |
-
"labels": [
|
| 128 |
-
"Std 1. Responsibilities",
|
| 129 |
-
"Std 2. Vehicle Control",
|
| 130 |
-
"Std 3. Vehicle Use",
|
| 131 |
-
"Std 4. Records and Documentation",
|
| 132 |
-
"Std 5. Verification",
|
| 133 |
-
"Std 6. Internal Review",
|
| 134 |
-
"Std 7. Training and Education",
|
| 135 |
-
"Std 8. Maintenance of Suspension"
|
| 136 |
-
]
|
| 137 |
-
},
|
| 138 |
-
|
| 139 |
-
# Table 10: Mass Management Summary of Audit findings (Standards 1-8)
|
| 140 |
-
{
|
| 141 |
-
"name": "Mass Management Summary of Audit findings",
|
| 142 |
-
"labels_on_left": True,
|
| 143 |
-
"labels": [
|
| 144 |
-
"Std 1. Responsibilities",
|
| 145 |
-
"Std 2. Vehicle Control",
|
| 146 |
-
"Std 3. Vehicle Use",
|
| 147 |
-
"Std 4. Records and Documentation",
|
| 148 |
-
"Std 5. Verification",
|
| 149 |
-
"Std 6. Internal Review",
|
| 150 |
-
"Std 7. Training and Education",
|
| 151 |
-
"Std 8. Maintenance of Suspension"
|
| 152 |
-
]
|
| 153 |
-
},
|
| 154 |
-
|
| 155 |
-
# Table 11: Vehicle Registration Numbers of Records Examined
|
| 156 |
-
{
|
| 157 |
-
"name": "Vehicle Registration Numbers of Records Examined",
|
| 158 |
-
"labels_on_row1": True,
|
| 159 |
-
"labels": [
|
| 160 |
-
"No.", "Registration Number",
|
| 161 |
-
"Sub-contractor (Yes/No)",
|
| 162 |
-
"Sub-contracted Vehicles Statement of Compliance (Yes/No)",
|
| 163 |
-
"Weight Verification Records (Date Range)",
|
| 164 |
-
"RFS Suspension Certification # (N/A if not applicable)",
|
| 165 |
-
"Suspension System Maintenance (Date Range)",
|
| 166 |
-
"Trip Records (Date Range)",
|
| 167 |
-
"Fault Recording/ Reporting on Suspension System (Date Range)"
|
| 168 |
-
]
|
| 169 |
-
},
|
| 170 |
-
|
| 171 |
-
# Table 12: Operator's Name (legal entity) - Signature block
|
| 172 |
-
{
|
| 173 |
-
"name": "Operatorβs Name (legal entity)",
|
| 174 |
-
"labels": ["Operatorβs Name (legal entity)"]
|
| 175 |
-
},
|
| 176 |
-
|
| 177 |
-
# Table 13: Non-conformance type
|
| 178 |
-
{
|
| 179 |
-
"name": "Non-conformance type (please tick)",
|
| 180 |
-
"labels": ["Un-conditional", "Conditional"]
|
| 181 |
-
},
|
| 182 |
-
|
| 183 |
-
# Table 14: Non-conformance Information
|
| 184 |
-
{
|
| 185 |
-
"name": "Non-conformance Information",
|
| 186 |
-
"labels_on_row1": True,
|
| 187 |
-
"labels": [
|
| 188 |
-
"Non-conformance agreed close out date",
|
| 189 |
-
"Module and Standard",
|
| 190 |
-
"Corrective Action Request (CAR) Number"
|
| 191 |
-
]
|
| 192 |
-
},
|
| 193 |
-
|
| 194 |
-
# Table 15: Non-conformance and action taken
|
| 195 |
-
{
|
| 196 |
-
"name": "Non-conformance and action taken",
|
| 197 |
-
"labels_on_row1": True,
|
| 198 |
-
"labels": [
|
| 199 |
-
"Observed Non-conformance:",
|
| 200 |
-
"Corrective Action taken or to be taken by operator:",
|
| 201 |
-
"Operator or Representative Signature", "Position", "Date"
|
| 202 |
-
]
|
| 203 |
-
},
|
| 204 |
-
|
| 205 |
-
# Table 16: Print Name / Auditor Reg Number
|
| 206 |
-
{
|
| 207 |
-
"name": "Print Name / Auditor Reg Number",
|
| 208 |
-
"labels_on_row1": True,
|
| 209 |
-
"labels": [
|
| 210 |
-
"Print Name",
|
| 211 |
-
"NHVR or Exemplar Global Auditor Registration Number"
|
| 212 |
-
]
|
| 213 |
-
},
|
| 214 |
-
|
| 215 |
-
# Table 17: Audit Declaration
|
| 216 |
-
{
|
| 217 |
-
"name": "Audit Declaration",
|
| 218 |
-
"labels_on_left": True,
|
| 219 |
-
"labels": [
|
| 220 |
-
"Audit was conducted on",
|
| 221 |
-
"Unconditional CARs closed out on:",
|
| 222 |
-
"Conditional CARs to be closed out by:"
|
| 223 |
-
]
|
| 224 |
-
},
|
| 225 |
-
|
| 226 |
-
# Table 18: print accreditation name
|
| 227 |
-
{
|
| 228 |
-
"name": "print accreditation name",
|
| 229 |
-
"labels": ["print accreditation name"]
|
| 230 |
-
},
|
| 231 |
-
|
| 232 |
-
# Table 19: Operator Declaration
|
| 233 |
-
{
|
| 234 |
-
"name": "Operator Declaration",
|
| 235 |
-
"labels_on_row1": True,
|
| 236 |
-
"labels": ["Print Name", "Position Title"]
|
| 237 |
-
}
|
| 238 |
-
]
|
| 239 |
-
|
| 240 |
-
def extract_red_text(path):
|
| 241 |
-
doc = Document(path)
|
| 242 |
-
|
| 243 |
-
# debug print
|
| 244 |
-
print(f"Found {len(doc.tables)} tables:")
|
| 245 |
-
for i,t in enumerate(doc.tables):
|
| 246 |
-
print(f" Table#{i}: β{t.rows[0].cells[0].text.strip()[:30]}β¦β")
|
| 247 |
-
print()
|
| 248 |
-
|
| 249 |
-
out = {}
|
| 250 |
-
for ti, spec in enumerate(MASTER_TABLES):
|
| 251 |
-
if ti >= len(doc.tables):
|
| 252 |
-
break
|
| 253 |
-
tbl = doc.tables[ti]
|
| 254 |
-
name = spec["name"]
|
| 255 |
-
|
| 256 |
-
# prepare container & dedupe sets
|
| 257 |
-
collected = {lbl:[] for lbl in spec["labels"]}
|
| 258 |
-
seen = {lbl:set() for lbl in spec["labels"]}
|
| 259 |
-
|
| 260 |
-
# choose orientation
|
| 261 |
-
if spec.get("labels_on_row1"):
|
| 262 |
-
headers = spec["labels"]
|
| 263 |
-
rows = tbl.rows[1:]
|
| 264 |
-
col_mode = True
|
| 265 |
-
elif spec.get("labels_on_left"):
|
| 266 |
-
headers = spec["labels"]
|
| 267 |
-
# skip any unwanted header/subheading rows
|
| 268 |
-
rows = [
|
| 269 |
-
row for row in tbl.rows[1:]
|
| 270 |
-
if row.cells[0].text.strip() not in spec.get("skip_rows",[])
|
| 271 |
-
]
|
| 272 |
-
col_mode = False
|
| 273 |
-
else:
|
| 274 |
-
headers = [name]
|
| 275 |
-
rows = tbl.rows
|
| 276 |
-
col_mode = None
|
| 277 |
-
|
| 278 |
-
# scan each cell
|
| 279 |
-
for ri,row in enumerate(rows):
|
| 280 |
-
for ci,cell in enumerate(row.cells):
|
| 281 |
-
red = "".join(
|
| 282 |
-
run.text for p in cell.paragraphs for run in p.runs
|
| 283 |
-
if is_red_font(run)
|
| 284 |
-
).strip()
|
| 285 |
-
if not red: continue
|
| 286 |
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 292 |
else:
|
| 293 |
-
lbl =
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
paras = {}
|
| 307 |
-
for
|
| 308 |
-
|
| 309 |
-
if not
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
for j in range(
|
| 313 |
-
|
| 314 |
-
continue
|
| 315 |
-
txt = doc.paragraphs[j].text.strip()
|
| 316 |
if txt:
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 321 |
if paras:
|
| 322 |
out["paragraphs"] = paras
|
| 323 |
return out
|
| 324 |
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
+
import re
|
| 3 |
+
import json
|
| 4 |
+
import sys
|
| 5 |
from docx import Document
|
| 6 |
from docx.oxml.ns import qn
|
| 7 |
+
from master_key import TABLE_SCHEMAS, HEADING_PATTERNS, PARAGRAPH_PATTERNS
|
| 8 |
|
| 9 |
+
def is_red_font(run):
|
| 10 |
+
"""Enhanced red font detection with better color checking"""
|
| 11 |
col = run.font.color
|
| 12 |
if col and col.rgb:
|
| 13 |
+
r, g, b = col.rgb
|
| 14 |
+
if r > 150 and g < 100 and b < 100 and (r-g) > 30 and (r-b) > 30:
|
| 15 |
return True
|
|
|
|
| 16 |
rPr = getattr(run._element, "rPr", None)
|
| 17 |
if rPr is not None:
|
| 18 |
clr = rPr.find(qn('w:color'))
|
| 19 |
if clr is not None:
|
| 20 |
val = clr.get(qn('w:val'))
|
| 21 |
+
if val and re.fullmatch(r"[0-9A-Fa-f]{6}", val):
|
| 22 |
+
rr, gg, bb = int(val[:2], 16), int(val[2:4], 16), int(val[4:], 16)
|
| 23 |
+
if rr > 150 and gg < 100 and bb < 100 and (rr-gg) > 30 and (rr-bb) > 30:
|
| 24 |
return True
|
| 25 |
return False
|
| 26 |
|
| 27 |
+
def _prev_para_text(tbl):
|
| 28 |
+
"""Get text from previous paragraph before table"""
|
| 29 |
+
prev = tbl._tbl.getprevious()
|
| 30 |
+
while prev is not None and not prev.tag.endswith("}p"):
|
| 31 |
+
prev = prev.getprevious()
|
| 32 |
+
if prev is None:
|
| 33 |
+
return ""
|
| 34 |
+
return "".join(node.text for node in prev.iter() if node.tag.endswith("}t") and node.text).strip()
|
| 35 |
+
|
| 36 |
+
def normalize_text(text):
|
| 37 |
+
"""Normalize text for better matching"""
|
| 38 |
+
return re.sub(r'\s+', ' ', text.strip())
|
| 39 |
+
|
| 40 |
+
def fuzzy_match_heading(heading, patterns):
|
| 41 |
+
"""Check if heading matches any pattern with fuzzy matching"""
|
| 42 |
+
heading_norm = normalize_text(heading.upper())
|
| 43 |
+
for pattern in patterns:
|
| 44 |
+
if re.search(pattern, heading_norm, re.IGNORECASE):
|
| 45 |
+
return True
|
| 46 |
+
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
+
def get_table_context(tbl):
|
| 49 |
+
"""Get comprehensive context information for table"""
|
| 50 |
+
heading = normalize_text(_prev_para_text(tbl))
|
| 51 |
+
headers = [normalize_text(c.text) for c in tbl.rows[0].cells if c.text.strip()]
|
| 52 |
+
col0 = [normalize_text(r.cells[0].text) for r in tbl.rows if r.cells[0].text.strip()]
|
| 53 |
+
first_cell = normalize_text(tbl.rows[0].cells[0].text) if tbl.rows else ""
|
| 54 |
+
all_cells = []
|
| 55 |
+
for row in tbl.rows:
|
| 56 |
+
for cell in row.cells:
|
| 57 |
+
text = normalize_text(cell.text)
|
| 58 |
+
if text:
|
| 59 |
+
all_cells.append(text)
|
| 60 |
+
return {
|
| 61 |
+
'heading': heading,
|
| 62 |
+
'headers': headers,
|
| 63 |
+
'col0': col0,
|
| 64 |
+
'first_cell': first_cell,
|
| 65 |
+
'all_cells': all_cells,
|
| 66 |
+
'num_rows': len(tbl.rows),
|
| 67 |
+
'num_cols': len(tbl.rows[0].cells) if tbl.rows else 0
|
| 68 |
+
}
|
| 69 |
+
|
| 70 |
+
def calculate_schema_match_score(schema_name, spec, context):
|
| 71 |
+
"""Calculate match score for a schema against table context"""
|
| 72 |
+
score = 0
|
| 73 |
+
reasons = []
|
| 74 |
+
if context['first_cell'] and context['first_cell'].upper() == schema_name.upper():
|
| 75 |
+
score += 100
|
| 76 |
+
reasons.append(f"Direct first cell match: '{context['first_cell']}'")
|
| 77 |
+
if spec.get("headings"):
|
| 78 |
+
for h in spec["headings"]:
|
| 79 |
+
if fuzzy_match_heading(context['heading'], [h["text"]]):
|
| 80 |
+
score += 50
|
| 81 |
+
reasons.append(f"Heading match: '{context['heading']}'")
|
| 82 |
+
break
|
| 83 |
+
if spec.get("orientation") == "left":
|
| 84 |
+
labels = [normalize_text(lbl) for lbl in spec["labels"]]
|
| 85 |
+
matches = 0
|
| 86 |
+
for lbl in labels:
|
| 87 |
+
if any(lbl.upper() in c.upper() or c.upper() in lbl.upper() for c in context['col0']):
|
| 88 |
+
matches += 1
|
| 89 |
+
if matches > 0:
|
| 90 |
+
score += (matches / len(labels)) * 30
|
| 91 |
+
reasons.append(f"Left orientation label matches: {matches}/{len(labels)}")
|
| 92 |
+
elif spec.get("orientation") == "row1":
|
| 93 |
+
labels = [normalize_text(lbl) for lbl in spec["labels"]]
|
| 94 |
+
matches = 0
|
| 95 |
+
for lbl in labels:
|
| 96 |
+
if any(lbl.upper() in h.upper() or h.upper() in lbl.upper() for h in context['headers']):
|
| 97 |
+
matches += 1
|
| 98 |
+
if matches > 0:
|
| 99 |
+
score += (matches / len(labels)) * 30
|
| 100 |
+
reasons.append(f"Row1 orientation header matches: {matches}/{len(labels)}")
|
| 101 |
+
if spec.get("columns"):
|
| 102 |
+
cols = [normalize_text(col) for col in spec["columns"]]
|
| 103 |
+
matches = 0
|
| 104 |
+
for col in cols:
|
| 105 |
+
if any(col.upper() in h.upper() for h in context['headers']):
|
| 106 |
+
matches += 1
|
| 107 |
+
if matches == len(cols):
|
| 108 |
+
score += 40
|
| 109 |
+
reasons.append(f"All column headers match: {cols}")
|
| 110 |
+
if schema_name == "Operator Declaration" and context['first_cell'].upper() == "PRINT NAME":
|
| 111 |
+
if "OPERATOR DECLARATION" in context['heading'].upper():
|
| 112 |
+
score += 80
|
| 113 |
+
reasons.append("Operator Declaration context match")
|
| 114 |
+
elif any("MANAGER" in cell.upper() for cell in context['all_cells']):
|
| 115 |
+
score += 60
|
| 116 |
+
reasons.append("Manager found in cells (likely Operator Declaration)")
|
| 117 |
+
if schema_name == "NHVAS Approved Auditor Declaration" and context['first_cell'].upper() == "PRINT NAME":
|
| 118 |
+
if any("MANAGER" in cell.upper() for cell in context['all_cells']):
|
| 119 |
+
score -= 50 # Penalty because auditors shouldn't be managers
|
| 120 |
+
reasons.append("Penalty: Manager found (not auditor)")
|
| 121 |
+
return score, reasons
|
| 122 |
+
|
| 123 |
+
def match_table_schema(tbl):
|
| 124 |
+
"""Improved table schema matching with scoring system"""
|
| 125 |
+
context = get_table_context(tbl)
|
| 126 |
+
best_match = None
|
| 127 |
+
best_score = 0
|
| 128 |
+
for name, spec in TABLE_SCHEMAS.items():
|
| 129 |
+
score, reasons = calculate_schema_match_score(name, spec, context)
|
| 130 |
+
if score > best_score:
|
| 131 |
+
best_score = score
|
| 132 |
+
best_match = name
|
| 133 |
+
if best_score >= 20:
|
| 134 |
+
return best_match
|
| 135 |
+
return None
|
| 136 |
+
|
| 137 |
+
def check_multi_schema_table(tbl):
|
| 138 |
+
"""Check if table contains multiple schemas and split appropriately"""
|
| 139 |
+
context = get_table_context(tbl)
|
| 140 |
+
operator_labels = ["Operator name (Legal entity)", "NHVAS Accreditation No.", "Registered trading name/s",
|
| 141 |
+
"Australian Company Number", "NHVAS Manual"]
|
| 142 |
+
contact_labels = ["Operator business address", "Operator Postal address", "Email address", "Operator Telephone Number"]
|
| 143 |
+
has_operator = any(any(op_lbl.upper() in cell.upper() for op_lbl in operator_labels) for cell in context['col0'])
|
| 144 |
+
has_contact = any(any(cont_lbl.upper() in cell.upper() for cont_lbl in contact_labels) for cell in context['col0'])
|
| 145 |
+
if has_operator and has_contact:
|
| 146 |
+
return ["Operator Information", "Operator contact details"]
|
| 147 |
+
return None
|
| 148 |
+
|
| 149 |
+
def extract_multi_schema_table(tbl, schemas):
|
| 150 |
+
"""Extract data from table with multiple schemas"""
|
| 151 |
+
result = {}
|
| 152 |
+
for schema_name in schemas:
|
| 153 |
+
if schema_name not in TABLE_SCHEMAS:
|
| 154 |
+
continue
|
| 155 |
+
spec = TABLE_SCHEMAS[schema_name]
|
| 156 |
+
schema_data = {}
|
| 157 |
+
for ri, row in enumerate(tbl.rows):
|
| 158 |
+
if ri == 0:
|
| 159 |
+
continue
|
| 160 |
+
row_label = normalize_text(row.cells[0].text)
|
| 161 |
+
belongs_to_schema = False
|
| 162 |
+
matched_label = None
|
| 163 |
+
for spec_label in spec["labels"]:
|
| 164 |
+
spec_norm = normalize_text(spec_label).upper()
|
| 165 |
+
row_norm = row_label.upper()
|
| 166 |
+
if spec_norm == row_norm or spec_norm in row_norm or row_norm in spec_norm:
|
| 167 |
+
belongs_to_schema = True
|
| 168 |
+
matched_label = spec_label
|
| 169 |
+
break
|
| 170 |
+
if not belongs_to_schema:
|
| 171 |
+
continue
|
| 172 |
+
for ci, cell in enumerate(row.cells):
|
| 173 |
+
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
|
| 174 |
+
if red_txt:
|
| 175 |
+
if matched_label not in schema_data:
|
| 176 |
+
schema_data[matched_label] = []
|
| 177 |
+
if red_txt not in schema_data[matched_label]:
|
| 178 |
+
schema_data[matched_label].append(red_txt)
|
| 179 |
+
if schema_data:
|
| 180 |
+
result[schema_name] = schema_data
|
| 181 |
+
return result
|
| 182 |
+
|
| 183 |
+
def extract_table_data(tbl, schema_name, spec):
|
| 184 |
+
"""Extract red text data from table based on schema"""
|
| 185 |
+
labels = spec["labels"] + [schema_name]
|
| 186 |
+
collected = {lbl: [] for lbl in labels}
|
| 187 |
+
seen = {lbl: set() for lbl in labels}
|
| 188 |
+
by_col = (spec["orientation"] == "row1")
|
| 189 |
+
start_row = 1 if by_col else 0
|
| 190 |
+
rows = tbl.rows[start_row:]
|
| 191 |
+
for ri, row in enumerate(rows):
|
| 192 |
+
for ci, cell in enumerate(row.cells):
|
| 193 |
+
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
|
| 194 |
+
if not red_txt:
|
| 195 |
+
continue
|
| 196 |
+
if by_col:
|
| 197 |
+
if ci < len(spec["labels"]):
|
| 198 |
+
lbl = spec["labels"][ci]
|
| 199 |
else:
|
| 200 |
+
lbl = schema_name
|
| 201 |
+
else:
|
| 202 |
+
raw_label = normalize_text(row.cells[0].text)
|
| 203 |
+
lbl = None
|
| 204 |
+
for spec_label in spec["labels"]:
|
| 205 |
+
if normalize_text(spec_label).upper() == raw_label.upper():
|
| 206 |
+
lbl = spec_label
|
| 207 |
+
break
|
| 208 |
+
if not lbl:
|
| 209 |
+
for spec_label in spec["labels"]:
|
| 210 |
+
spec_norm = normalize_text(spec_label).upper()
|
| 211 |
+
raw_norm = raw_label.upper()
|
| 212 |
+
if spec_norm in raw_norm or raw_norm in spec_norm:
|
| 213 |
+
lbl = spec_label
|
| 214 |
+
break
|
| 215 |
+
if not lbl:
|
| 216 |
+
lbl = schema_name
|
| 217 |
+
if red_txt not in seen[lbl]:
|
| 218 |
+
seen[lbl].add(red_txt)
|
| 219 |
+
collected[lbl].append(red_txt)
|
| 220 |
+
return {k: v for k, v in collected.items() if v}
|
| 221 |
+
|
| 222 |
+
def extract_red_text(input_doc):
|
| 223 |
+
# input_doc: docx.Document object or file path
|
| 224 |
+
if isinstance(input_doc, str):
|
| 225 |
+
doc = Document(input_doc)
|
| 226 |
+
else:
|
| 227 |
+
doc = input_doc
|
| 228 |
+
out = {}
|
| 229 |
+
table_count = 0
|
| 230 |
+
for tbl in doc.tables:
|
| 231 |
+
table_count += 1
|
| 232 |
+
multi_schemas = check_multi_schema_table(tbl)
|
| 233 |
+
if multi_schemas:
|
| 234 |
+
multi_data = extract_multi_schema_table(tbl, multi_schemas)
|
| 235 |
+
for schema_name, schema_data in multi_data.items():
|
| 236 |
+
if schema_data:
|
| 237 |
+
if schema_name in out:
|
| 238 |
+
for k, v in schema_data.items():
|
| 239 |
+
if k in out[schema_name]:
|
| 240 |
+
out[schema_name][k].extend(v)
|
| 241 |
+
else:
|
| 242 |
+
out[schema_name][k] = v
|
| 243 |
+
else:
|
| 244 |
+
out[schema_name] = schema_data
|
| 245 |
+
continue
|
| 246 |
+
schema = match_table_schema(tbl)
|
| 247 |
+
if not schema:
|
| 248 |
+
continue
|
| 249 |
+
spec = TABLE_SCHEMAS[schema]
|
| 250 |
+
data = extract_table_data(tbl, schema, spec)
|
| 251 |
+
if data:
|
| 252 |
+
if schema in out:
|
| 253 |
+
for k, v in data.items():
|
| 254 |
+
if k in out[schema]:
|
| 255 |
+
out[schema][k].extend(v)
|
| 256 |
+
else:
|
| 257 |
+
out[schema][k] = v
|
| 258 |
+
else:
|
| 259 |
+
out[schema] = data
|
| 260 |
paras = {}
|
| 261 |
+
for idx, para in enumerate(doc.paragraphs):
|
| 262 |
+
red_txt = "".join(r.text for r in para.runs if is_red_font(r)).strip()
|
| 263 |
+
if not red_txt:
|
| 264 |
+
continue
|
| 265 |
+
context = None
|
| 266 |
+
for j in range(idx-1, -1, -1):
|
| 267 |
+
txt = normalize_text(doc.paragraphs[j].text)
|
|
|
|
|
|
|
| 268 |
if txt:
|
| 269 |
+
all_patterns = HEADING_PATTERNS["main"] + HEADING_PATTERNS["sub"]
|
| 270 |
+
if any(re.search(p, txt, re.IGNORECASE) for p in all_patterns):
|
| 271 |
+
context = txt
|
| 272 |
+
break
|
| 273 |
+
if not context and re.fullmatch(PARAGRAPH_PATTERNS["date_line"], red_txt):
|
| 274 |
+
context = "Date"
|
| 275 |
+
if not context:
|
| 276 |
+
context = "(para)"
|
| 277 |
+
paras.setdefault(context, []).append(red_txt)
|
| 278 |
if paras:
|
| 279 |
out["paragraphs"] = paras
|
| 280 |
return out
|
| 281 |
|
| 282 |
+
def extract_red_text_filelike(input_file, output_file):
|
| 283 |
+
"""
|
| 284 |
+
Accepts:
|
| 285 |
+
input_file: file-like object (BytesIO/File) or path
|
| 286 |
+
output_file: file-like object (opened for writing text) or path
|
| 287 |
+
"""
|
| 288 |
+
if hasattr(input_file, "seek"):
|
| 289 |
+
input_file.seek(0)
|
| 290 |
+
doc = Document(input_file)
|
| 291 |
+
result = extract_red_text(doc)
|
| 292 |
+
if hasattr(output_file, "write"):
|
| 293 |
+
json.dump(result, output_file, indent=2, ensure_ascii=False)
|
| 294 |
+
output_file.flush()
|
| 295 |
+
else:
|
| 296 |
+
with open(output_file, "w", encoding="utf-8") as f:
|
| 297 |
+
json.dump(result, f, indent=2, ensure_ascii=False)
|
| 298 |
+
return result
|
| 299 |
+
|
| 300 |
+
if __name__ == "__main__":
|
| 301 |
+
# Support both script and app/file-like usage
|
| 302 |
+
if len(sys.argv) == 3:
|
| 303 |
+
input_docx = sys.argv[1]
|
| 304 |
+
output_json = sys.argv[2]
|
| 305 |
+
doc = Document(input_docx)
|
| 306 |
+
word_data = extract_red_text(doc)
|
| 307 |
+
with open(output_json, 'w', encoding='utf-8') as f:
|
| 308 |
+
json.dump(word_data, f, indent=2, ensure_ascii=False)
|
| 309 |
+
print(json.dumps(word_data, indent=2, ensure_ascii=False))
|
| 310 |
+
else:
|
| 311 |
+
print("To use as a module: extract_red_text_filelike(input_file, output_file)")
|