Spaces:
Running
Running
Update extract_red_text.py
Browse files- extract_red_text.py +316 -577
extract_red_text.py
CHANGED
|
@@ -2,601 +2,340 @@
|
|
| 2 |
"""
|
| 3 |
extract_red_text.py
|
| 4 |
"""
|
| 5 |
-
|
|
|
|
| 6 |
import json
|
|
|
|
| 7 |
import sys
|
| 8 |
-
|
| 9 |
-
from
|
| 10 |
-
from
|
| 11 |
-
|
| 12 |
-
#
|
| 13 |
-
|
| 14 |
-
from
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
def
|
| 18 |
"""
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
- python-docx run.font.color.rgb (safe-guarded)
|
| 22 |
-
- raw XML rPr/w:color value (hex)
|
| 23 |
-
Returns True if color appears predominantly red.
|
| 24 |
"""
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
try:
|
| 31 |
-
|
| 32 |
-
if
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
if
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
except Exception:
|
| 56 |
-
# ignore and continue to XML method
|
| 57 |
pass
|
| 58 |
-
|
| 59 |
-
# 2) Inspect raw XML run properties for <w:color w:val="RRGGBB" />
|
| 60 |
try:
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
val = clr.get(qn('w:val')) or clr.get('w:val') or clr.get('val')
|
| 66 |
-
if val and isinstance(val, str):
|
| 67 |
-
val = val.strip()
|
| 68 |
-
# sometimes color is provided as 'FF0000' hex or shorthand
|
| 69 |
-
if re.fullmatch(r"[0-9A-Fa-f]{6}", val):
|
| 70 |
-
rr, gg, bb = int(val[0:2], 16), int(val[2:4], 16), int(val[4:6], 16)
|
| 71 |
-
if rr > 150 and gg < 120 and bb < 120 and (rr - gg) > 30 and (rr - bb) > 30:
|
| 72 |
-
return True
|
| 73 |
except Exception:
|
| 74 |
pass
|
| 75 |
-
|
| 76 |
-
return False
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
def _prev_para_text(tbl):
|
| 80 |
-
"""Return text of previous paragraph node before a given table element."""
|
| 81 |
-
prev = tbl._tbl.getprevious()
|
| 82 |
-
while prev is not None and not prev.tag.endswith("}p"):
|
| 83 |
-
prev = prev.getprevious()
|
| 84 |
-
if prev is None:
|
| 85 |
-
return ""
|
| 86 |
-
# gather all text nodes under the paragraph element
|
| 87 |
-
return "".join(node.text for node in prev.iter() if node.tag.endswith("}t") and node.text).strip()
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
def normalize_text(text):
|
| 91 |
-
"""Normalize text for more reliable matching (collapse whitespace)."""
|
| 92 |
-
if text is None:
|
| 93 |
-
return ""
|
| 94 |
-
return re.sub(r'\s+', ' ', text.strip())
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
def fuzzy_match_heading(heading, patterns):
|
| 98 |
-
"""
|
| 99 |
-
Attempt fuzzy matching of heading against regex patterns.
|
| 100 |
-
patterns is a list of pattern dicts or strings.
|
| 101 |
-
"""
|
| 102 |
-
heading_norm = normalize_text(heading.upper())
|
| 103 |
-
for p in patterns:
|
| 104 |
-
if isinstance(p, dict):
|
| 105 |
-
pat = p.get("text", "")
|
| 106 |
-
else:
|
| 107 |
-
pat = p
|
| 108 |
-
try:
|
| 109 |
-
if re.search(pat, heading_norm, re.IGNORECASE):
|
| 110 |
-
return True
|
| 111 |
-
except re.error:
|
| 112 |
-
# treat as plain substring fallback
|
| 113 |
-
if pat and pat.upper() in heading_norm:
|
| 114 |
-
return True
|
| 115 |
return False
|
| 116 |
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
for
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
kw_count = 0
|
| 182 |
-
for kw in spec.get("context_keywords", []):
|
| 183 |
-
if kw.lower() in table_text:
|
| 184 |
-
kw_count += 1
|
| 185 |
-
if kw_count:
|
| 186 |
-
score += kw_count * 15
|
| 187 |
-
reasons.append(f"Context keywords matched: {kw_count}")
|
| 188 |
-
|
| 189 |
-
# First-cell exact match
|
| 190 |
-
if context.get('first_cell') and context['first_cell'].upper() == schema_name.upper():
|
| 191 |
-
score += 100
|
| 192 |
-
reasons.append("Exact first cell match")
|
| 193 |
-
|
| 194 |
-
# Heading pattern match
|
| 195 |
-
for h in spec.get("headings", []) or []:
|
| 196 |
-
pat = h.get("text") if isinstance(h, dict) and h.get("text") else h
|
| 197 |
-
try:
|
| 198 |
-
if pat and re.search(pat, context.get('heading', ""), re.IGNORECASE):
|
| 199 |
-
score += 50
|
| 200 |
-
reasons.append(f"Heading regex matched: {pat}")
|
| 201 |
-
break
|
| 202 |
-
except re.error:
|
| 203 |
-
if pat and pat.lower() in context.get('heading', "").lower():
|
| 204 |
-
score += 50
|
| 205 |
-
reasons.append(f"Heading substring matched: {pat}")
|
| 206 |
-
break
|
| 207 |
-
|
| 208 |
-
# Column header matching (strict)
|
| 209 |
-
if spec.get("columns"):
|
| 210 |
-
cols = [normalize_text(c) for c in spec["columns"]]
|
| 211 |
-
matches = 0
|
| 212 |
-
for col in cols:
|
| 213 |
-
if any(col.upper() in h.upper() for h in context.get('headers', [])):
|
| 214 |
-
matches += 1
|
| 215 |
-
if matches == len(cols):
|
| 216 |
-
score += 60
|
| 217 |
-
reasons.append("All expected columns matched exactly")
|
| 218 |
-
elif matches > 0:
|
| 219 |
-
score += matches * 20
|
| 220 |
-
reasons.append(f"Partial column matches: {matches}/{len(cols)}")
|
| 221 |
-
|
| 222 |
-
# Label matching for left-oriented tables
|
| 223 |
-
if spec.get("orientation") == "left":
|
| 224 |
-
labels = [normalize_text(lbl) for lbl in spec.get("labels", [])]
|
| 225 |
-
matches = 0
|
| 226 |
-
for lbl in labels:
|
| 227 |
-
if any(lbl.upper() in c.upper() or c.upper() in lbl.upper() for c in context.get('col0', [])):
|
| 228 |
-
matches += 1
|
| 229 |
-
if matches > 0:
|
| 230 |
-
score += (matches / max(1, len(labels))) * 30
|
| 231 |
-
reasons.append(f"Left-orientation label matches: {matches}/{len(labels)}")
|
| 232 |
-
|
| 233 |
-
# Row1 (header row) flexible matching
|
| 234 |
-
elif spec.get("orientation") == "row1":
|
| 235 |
-
labels = [normalize_text(lbl) for lbl in spec.get("labels", [])]
|
| 236 |
-
matches = 0.0
|
| 237 |
-
header_texts = " ".join(context.get('headers', [])).upper()
|
| 238 |
-
for lbl in labels:
|
| 239 |
-
label_upper = lbl.upper()
|
| 240 |
-
# exact in any header
|
| 241 |
-
if any(label_upper in h.upper() for h in context.get('headers', [])):
|
| 242 |
-
matches += 1.0
|
| 243 |
-
else:
|
| 244 |
-
# partial words from label in header_texts
|
| 245 |
-
for word in label_upper.split():
|
| 246 |
-
if len(word) > 3 and word in header_texts:
|
| 247 |
-
matches += 0.5
|
| 248 |
-
break
|
| 249 |
-
if matches > 0:
|
| 250 |
-
score += (matches / max(1.0, len(labels))) * 40
|
| 251 |
-
reasons.append(f"Row1 header-like matches: {matches}/{len(labels)}")
|
| 252 |
-
|
| 253 |
-
# Special handling for declaration schemas
|
| 254 |
-
if schema_name == "Operator Declaration":
|
| 255 |
-
# boost if 'print name' first cell and heading indicates operator declaration
|
| 256 |
-
if context.get('first_cell', "").upper().startswith("PRINT"):
|
| 257 |
-
if "OPERATOR DECLARATION" in context.get('heading', "").upper():
|
| 258 |
-
score += 80
|
| 259 |
-
reasons.append("Operator Declaration context & first-cell indicate match")
|
| 260 |
-
elif any("MANAGER" in c.upper() for c in context.get('all_cells', [])):
|
| 261 |
-
score += 60
|
| 262 |
-
reasons.append("Manager found in cells for Operator Declaration")
|
| 263 |
-
|
| 264 |
-
if schema_name == "NHVAS Approved Auditor Declaration":
|
| 265 |
-
if context.get('first_cell', "").upper().startswith("PRINT"):
|
| 266 |
-
# penalize where manager words appear (to reduce false positives)
|
| 267 |
-
if any("MANAGER" in c.upper() for c in context.get('all_cells', [])):
|
| 268 |
-
score -= 50
|
| 269 |
-
reasons.append("Penalty: found manager text in auditor declaration table")
|
| 270 |
-
|
| 271 |
-
return score, reasons
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
def match_table_schema(tbl):
|
| 275 |
-
"""
|
| 276 |
-
Iterate TABLE_SCHEMAS and pick best match by score threshold.
|
| 277 |
-
Returns schema name or None when below threshold.
|
| 278 |
-
"""
|
| 279 |
-
context = get_table_context(tbl)
|
| 280 |
-
best_match = None
|
| 281 |
-
best_score = float("-inf")
|
| 282 |
-
for name, spec in TABLE_SCHEMAS.items():
|
| 283 |
-
try:
|
| 284 |
-
score, reasons = calculate_schema_match_score(name, spec, context)
|
| 285 |
-
except Exception:
|
| 286 |
-
score, reasons = 0, ["error computing score"]
|
| 287 |
-
if score > best_score:
|
| 288 |
-
best_score = score
|
| 289 |
-
best_match = name
|
| 290 |
-
# threshold to avoid spurious picks
|
| 291 |
-
if best_score >= 20:
|
| 292 |
-
return best_match
|
| 293 |
-
return None
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
def check_multi_schema_table(tbl):
|
| 297 |
-
"""
|
| 298 |
-
Identify tables that contain multiple logical schemas (e.g., Operator Information + Contact Details)
|
| 299 |
-
Return list of schema names if multi, else None.
|
| 300 |
-
"""
|
| 301 |
-
context = get_table_context(tbl)
|
| 302 |
-
operator_labels = ["Operator name (Legal entity)", "NHVAS Accreditation No.", "Registered trading name/s",
|
| 303 |
-
"Australian Company Number", "NHVAS Manual"]
|
| 304 |
-
contact_labels = ["Operator business address", "Operator Postal address", "Email address", "Operator Telephone Number"]
|
| 305 |
-
has_operator = any(any(op_lbl.upper() in cell.upper() for op_lbl in operator_labels) for cell in context.get('col0', []))
|
| 306 |
-
has_contact = any(any(cont_lbl.upper() in cell.upper() for cont_lbl in contact_labels) for cell in context.get('col0', []))
|
| 307 |
-
if has_operator and has_contact:
|
| 308 |
-
return ["Operator Information", "Operator contact details"]
|
| 309 |
-
return None
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
def extract_multi_schema_table(tbl, schemas):
|
| 313 |
-
"""
|
| 314 |
-
For tables that embed multiple schema sections vertically (left orientation), split and extract.
|
| 315 |
-
Returns a dict mapping schema_name -> {label: [values,...]}
|
| 316 |
-
"""
|
| 317 |
-
result = {}
|
| 318 |
-
for schema_name in schemas:
|
| 319 |
-
if schema_name not in TABLE_SCHEMAS:
|
| 320 |
-
continue
|
| 321 |
-
spec = TABLE_SCHEMAS[schema_name]
|
| 322 |
-
schema_data = {}
|
| 323 |
-
# iterate rows and match the left-most cell against spec labels
|
| 324 |
-
for ri, row in enumerate(tbl.rows):
|
| 325 |
-
if not row.cells:
|
| 326 |
-
continue
|
| 327 |
-
row_label = normalize_text(row.cells[0].text)
|
| 328 |
-
belongs = False
|
| 329 |
-
matched_label = None
|
| 330 |
-
for spec_label in spec.get("labels", []):
|
| 331 |
-
spec_norm = normalize_text(spec_label).upper()
|
| 332 |
-
row_norm = row_label.upper()
|
| 333 |
-
if spec_norm == row_norm or spec_norm in row_norm or row_norm in spec_norm:
|
| 334 |
-
belongs = True
|
| 335 |
-
matched_label = spec_label
|
| 336 |
-
break
|
| 337 |
-
if not belongs:
|
| 338 |
-
continue
|
| 339 |
-
# gather red-text from the row's value cells (all others)
|
| 340 |
-
for ci, cell in enumerate(row.cells[1:], start=1):
|
| 341 |
-
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
|
| 342 |
-
if red_txt:
|
| 343 |
-
schema_data.setdefault(matched_label, []).append(red_txt)
|
| 344 |
-
if schema_data:
|
| 345 |
-
result[schema_name] = schema_data
|
| 346 |
-
return result
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
def extract_table_data(tbl, schema_name, spec):
|
| 350 |
-
"""
|
| 351 |
-
Extract red text from a table for a given schema.
|
| 352 |
-
Special handling for Vehicle Registration (row1 header orientation).
|
| 353 |
-
"""
|
| 354 |
-
# Vehicle Registration special-case (headers in first row)
|
| 355 |
-
if "Vehicle Registration" in schema_name:
|
| 356 |
-
print(f" 🚗 EXTRACTION FIX: Processing Vehicle Registration table")
|
| 357 |
-
labels = spec.get("labels", [])
|
| 358 |
-
collected = {lbl: [] for lbl in labels}
|
| 359 |
-
seen = {lbl: set() for lbl in labels}
|
| 360 |
-
|
| 361 |
-
if len(tbl.rows) < 2:
|
| 362 |
-
print(" ❌ Vehicle table has less than 2 rows; skipping")
|
| 363 |
-
return {}
|
| 364 |
-
|
| 365 |
-
header_row = tbl.rows[0]
|
| 366 |
-
column_mapping = {}
|
| 367 |
-
print(f" 📋 Mapping {len(header_row.cells)} header cells to labels")
|
| 368 |
-
|
| 369 |
-
for col_idx, cell in enumerate(header_row.cells):
|
| 370 |
-
header_text = normalize_text(cell.text).strip()
|
| 371 |
-
if not header_text:
|
| 372 |
-
continue
|
| 373 |
-
print(f" Column {col_idx}: '{header_text}'")
|
| 374 |
-
best_match = None
|
| 375 |
-
best_score = 0.0
|
| 376 |
-
|
| 377 |
-
for label in labels:
|
| 378 |
-
# exact match
|
| 379 |
-
if header_text.upper() == label.upper():
|
| 380 |
-
best_match = label
|
| 381 |
-
best_score = 1.0
|
| 382 |
-
break
|
| 383 |
-
|
| 384 |
-
# partial token overlap scoring
|
| 385 |
-
header_words = set(word.upper() for word in header_text.split() if len(word) > 2)
|
| 386 |
-
label_words = set(word.upper() for word in label.split() if len(word) > 2)
|
| 387 |
-
if header_words and label_words:
|
| 388 |
-
common = header_words.intersection(label_words)
|
| 389 |
-
if common:
|
| 390 |
-
score = len(common) / max(len(header_words), len(label_words))
|
| 391 |
-
if score > best_score and score >= 0.35: # relaxed threshold for OCR noise
|
| 392 |
-
best_score = score
|
| 393 |
-
best_match = label
|
| 394 |
-
|
| 395 |
-
if best_match:
|
| 396 |
-
column_mapping[col_idx] = best_match
|
| 397 |
-
print(f" ✅ Mapped to: '{best_match}' (score: {best_score:.2f})")
|
| 398 |
-
else:
|
| 399 |
-
# additional heuristics: simple substring matches
|
| 400 |
-
for label in labels:
|
| 401 |
-
if label.lower() in header_text.lower() or header_text.lower() in label.lower():
|
| 402 |
-
column_mapping[col_idx] = label
|
| 403 |
-
print(f" ✅ Mapped by substring to: '{label}'")
|
| 404 |
-
break
|
| 405 |
else:
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
for spec_label in spec.get("labels", []):
|
| 454 |
-
if normalize_text(spec_label).upper() == raw_label.upper():
|
| 455 |
-
lbl = spec_label
|
| 456 |
-
break
|
| 457 |
-
if not lbl:
|
| 458 |
-
for spec_label in spec.get("labels", []):
|
| 459 |
-
spec_norm = normalize_text(spec_label).upper()
|
| 460 |
-
raw_norm = raw_label.upper()
|
| 461 |
-
if spec_norm in raw_norm or raw_norm in spec_norm:
|
| 462 |
-
lbl = spec_label
|
| 463 |
-
break
|
| 464 |
-
if not lbl:
|
| 465 |
-
lbl = schema_name
|
| 466 |
-
|
| 467 |
-
if red_txt not in seen[lbl]:
|
| 468 |
-
seen[lbl].add(red_txt)
|
| 469 |
-
collected[lbl].append(red_txt)
|
| 470 |
-
|
| 471 |
-
return {k: v for k, v in collected.items() if v}
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
def extract_red_text(input_doc):
|
| 475 |
-
"""
|
| 476 |
-
Main extraction function.
|
| 477 |
-
Accepts a docx.Document object or a path string (filename).
|
| 478 |
-
Returns dictionary of extracted red-text organized by schema.
|
| 479 |
-
"""
|
| 480 |
-
if isinstance(input_doc, str):
|
| 481 |
-
doc = Document(input_doc)
|
| 482 |
-
else:
|
| 483 |
-
doc = input_doc
|
| 484 |
-
|
| 485 |
-
out = {}
|
| 486 |
-
table_count = 0
|
| 487 |
-
|
| 488 |
-
for tbl in doc.tables:
|
| 489 |
-
table_count += 1
|
| 490 |
-
# Check for multi-schema tables first
|
| 491 |
-
multi_schemas = check_multi_schema_table(tbl)
|
| 492 |
-
if multi_schemas:
|
| 493 |
-
multi_data = extract_multi_schema_table(tbl, multi_schemas)
|
| 494 |
-
for schema_name, schema_data in multi_data.items():
|
| 495 |
-
if schema_data:
|
| 496 |
-
if schema_name in out:
|
| 497 |
-
for k, v in schema_data.items():
|
| 498 |
-
out[schema_name].setdefault(k, []).extend(v)
|
| 499 |
-
else:
|
| 500 |
-
out[schema_name] = schema_data
|
| 501 |
-
continue
|
| 502 |
-
|
| 503 |
-
# match a single schema
|
| 504 |
-
schema = match_table_schema(tbl)
|
| 505 |
-
if not schema:
|
| 506 |
-
# no confident schema match
|
| 507 |
-
continue
|
| 508 |
-
spec = TABLE_SCHEMAS.get(schema, {})
|
| 509 |
-
data = extract_table_data(tbl, schema, spec)
|
| 510 |
-
if data:
|
| 511 |
-
if schema in out:
|
| 512 |
-
for k, v in data.items():
|
| 513 |
-
out[schema].setdefault(k, []).extend(v)
|
| 514 |
-
else:
|
| 515 |
-
out[schema] = data
|
| 516 |
-
|
| 517 |
-
# Paragraph-level red-text extraction (with contextual heading resolution)
|
| 518 |
-
paras = {}
|
| 519 |
-
for idx, para in enumerate(doc.paragraphs):
|
| 520 |
-
red_txt = "".join(r.text for r in para.runs if is_red_font(r)).strip()
|
| 521 |
-
if not red_txt:
|
| 522 |
-
continue
|
| 523 |
-
|
| 524 |
-
# attempt to find nearest preceding heading paragraph (using HEADING_PATTERNS)
|
| 525 |
-
context = None
|
| 526 |
-
for j in range(idx - 1, -1, -1):
|
| 527 |
-
txt = normalize_text(doc.paragraphs[j].text)
|
| 528 |
-
if not txt:
|
| 529 |
-
continue
|
| 530 |
-
all_patterns = HEADING_PATTERNS.get("main", []) + HEADING_PATTERNS.get("sub", [])
|
| 531 |
-
if any(re.search(p, txt, re.IGNORECASE) for p in all_patterns):
|
| 532 |
-
context = txt
|
| 533 |
-
break
|
| 534 |
-
|
| 535 |
-
# fallback: date-line mapping for 'Date' single-line red texts
|
| 536 |
-
if not context and re.fullmatch(PARAGRAPH_PATTERNS.get("date_line", r"^\s*\d{1,2}(?:st|nd|rd|th)?\s+[A-Za-z]+\s+\d{4}\s*$|^Date$"), red_txt):
|
| 537 |
-
context = "Date"
|
| 538 |
-
|
| 539 |
-
if not context:
|
| 540 |
-
context = "(para)"
|
| 541 |
-
|
| 542 |
-
paras.setdefault(context, []).append(red_txt)
|
| 543 |
-
|
| 544 |
-
if paras:
|
| 545 |
-
out["paragraphs"] = paras
|
| 546 |
-
|
| 547 |
return out
|
| 548 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 549 |
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
# Reset file-like if necessary
|
| 559 |
-
if hasattr(input_file, "seek"):
|
| 560 |
-
try:
|
| 561 |
-
input_file.seek(0)
|
| 562 |
-
except Exception:
|
| 563 |
-
pass
|
| 564 |
-
|
| 565 |
-
# Load Document
|
| 566 |
-
if isinstance(input_file, (str, bytes)):
|
| 567 |
-
doc = Document(input_file)
|
| 568 |
-
else:
|
| 569 |
-
doc = Document(input_file)
|
| 570 |
-
|
| 571 |
-
result = extract_red_text(doc)
|
| 572 |
-
|
| 573 |
-
# Write result out
|
| 574 |
-
if hasattr(output_file, "write"):
|
| 575 |
-
json.dump(result, output_file, indent=2, ensure_ascii=False)
|
| 576 |
-
try:
|
| 577 |
-
output_file.flush()
|
| 578 |
-
except Exception:
|
| 579 |
-
pass
|
| 580 |
-
else:
|
| 581 |
-
with open(output_file, "w", encoding="utf-8") as f:
|
| 582 |
-
json.dump(result, f, indent=2, ensure_ascii=False)
|
| 583 |
-
|
| 584 |
-
return result
|
| 585 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 586 |
|
| 587 |
if __name__ == "__main__":
|
| 588 |
-
|
| 589 |
-
if len(sys.argv) == 3:
|
| 590 |
-
input_docx = sys.argv[1]
|
| 591 |
-
output_json = sys.argv[2]
|
| 592 |
-
try:
|
| 593 |
-
doc = Document(input_docx)
|
| 594 |
-
word_data = extract_red_text(doc)
|
| 595 |
-
with open(output_json, 'w', encoding='utf-8') as f:
|
| 596 |
-
json.dump(word_data, f, indent=2, ensure_ascii=False)
|
| 597 |
-
print(json.dumps(word_data, indent=2, ensure_ascii=False))
|
| 598 |
-
except Exception as e:
|
| 599 |
-
print("Error during extraction:", e)
|
| 600 |
-
raise
|
| 601 |
-
else:
|
| 602 |
-
print("To use as a module: extract_red_text_filelike(input_file, output_file)")
|
|
|
|
| 2 |
"""
|
| 3 |
extract_red_text.py
|
| 4 |
"""
|
| 5 |
+
|
| 6 |
+
from __future__ import annotations
|
| 7 |
import json
|
| 8 |
+
import re
|
| 9 |
import sys
|
| 10 |
+
import logging
|
| 11 |
+
from collections import defaultdict
|
| 12 |
+
from typing import List, Dict, Optional, Any
|
| 13 |
+
|
| 14 |
+
# attempt to import python-docx (document processing)
|
| 15 |
+
try:
|
| 16 |
+
from docx import Document
|
| 17 |
+
from docx.oxml.ns import qn
|
| 18 |
+
from docx.shared import RGBColor
|
| 19 |
+
except Exception as e:
|
| 20 |
+
raise RuntimeError("python-docx is required. Install with: pip install python-docx") from e
|
| 21 |
+
|
| 22 |
+
# ------------------------------
|
| 23 |
+
# Import master_key GLOBAL_SETTINGS and optional EXTRA_HEADER_SYNONYMS
|
| 24 |
+
# ------------------------------
|
| 25 |
+
try:
|
| 26 |
+
import master_key as mk
|
| 27 |
+
GLOBAL_SETTINGS = getattr(mk, "GLOBAL_SETTINGS", {})
|
| 28 |
+
EXTRA_HEADER_SYNONYMS = getattr(mk, "EXTRA_HEADER_SYNONYMS", None)
|
| 29 |
+
except Exception:
|
| 30 |
+
GLOBAL_SETTINGS = {
|
| 31 |
+
"normalize": {
|
| 32 |
+
"lower": True,
|
| 33 |
+
"strip_punctuation": True,
|
| 34 |
+
"collapse_whitespace": True,
|
| 35 |
+
"replace_smart_dashes": True
|
| 36 |
+
},
|
| 37 |
+
"ocr_repair_rules": [
|
| 38 |
+
(r"\s*\(\s*Yes\s*/\s*No\s*\)", " (Yes/No)"),
|
| 39 |
+
(r"R[e3]gistrat[i1]on", "Registration"),
|
| 40 |
+
(r"Prin?t", "Print"),
|
| 41 |
+
(r"Accredi[ta]tion", "Accreditation"),
|
| 42 |
+
(r"[^\w\s\-\&\(\)\/:]", " "),
|
| 43 |
+
],
|
| 44 |
+
"split_on": [" – ", " - ", ";", "\n", " / "],
|
| 45 |
+
"date_like_pattern": r"^\s*(\d{1,2}(st|nd|rd|th)?\s+[A-Za-z]+|\d{1,2}\/\d{1,2}\/\d{2,4}|\d{1,2}\.\d{1,2}\.\d{2,4}|\d{1,2}\s+[A-Za-z]{3,})",
|
| 46 |
+
"fuzzy_thresholds": {"high_priority": 70, "medium_priority": 60, "low_priority": 45},
|
| 47 |
+
"fuzzy_algorithm": "token_set_ratio",
|
| 48 |
+
}
|
| 49 |
+
EXTRA_HEADER_SYNONYMS = None
|
| 50 |
+
|
| 51 |
+
# Provide an internal default synonyms map (compact keys -> canonical label)
|
| 52 |
+
# This is used only if master_key.EXTRA_HEADER_SYNONYMS is not defined.
|
| 53 |
+
_DEFAULT_EXTRA_HEADER_SYNONYMS = {
|
| 54 |
+
# Compact key: canonical label
|
| 55 |
+
# Examples from your logs (long/noisy headers)
|
| 56 |
+
"roadworthinesscertificatesapplicableforentryaudit": "Roadworthiness Certificates",
|
| 57 |
+
"roadworthinesscertificates": "Roadworthiness Certificates",
|
| 58 |
+
"rfsuspensioncertificationn/aifnotapplicable": "RFS Suspension Certification #",
|
| 59 |
+
"rfsuspensioncertification": "RFS Suspension Certification #",
|
| 60 |
+
"maintenanceRecordsrecorddaterangeofrecordsreviewed".lower(): "Maintenance Records",
|
| 61 |
+
"maintenancerecords": "Maintenance Records",
|
| 62 |
+
"faultrecordingreportingonsuspensionsystemdaterange".lower(): "Fault Recording/ Reporting",
|
| 63 |
+
"faultrecordingreporting": "Fault Recording/ Reporting",
|
| 64 |
+
"faultrepairdaterange": "Fault Repair",
|
| 65 |
+
"triprecordsdaterange": "Trip Records",
|
| 66 |
+
# Add common variations
|
| 67 |
+
"registrationnumber": "Registration Number",
|
| 68 |
+
"registrationnumbernumber": "Registration Number",
|
| 69 |
+
"subcontractor(yesno)": "Sub-contractor (Yes/No)",
|
| 70 |
+
"sub-contractor(yes/no)": "Sub-contractor (Yes/No)",
|
| 71 |
+
"nhvrorexemplarglobalauditorregistrationnumber": "NHVR or Exemplar Global Auditor Registration Number",
|
| 72 |
+
"printname": "Print Name",
|
| 73 |
+
"print": "Print Name",
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
# If mk provided EXTRA_HEADER_SYNONYMS, use it (but ensure keys are compacted similarly)
|
| 77 |
+
if EXTRA_HEADER_SYNONYMS is None:
|
| 78 |
+
EXTRA_HEADER_SYNONYMS = _DEFAULT_EXTRA_HEADER_SYNONYMS
|
| 79 |
+
|
| 80 |
+
# ------------------------------
|
| 81 |
+
# Logging
|
| 82 |
+
# ------------------------------
|
| 83 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s: %(message)s")
|
| 84 |
+
log = logging.getLogger("extract_red_text")
|
| 85 |
+
|
| 86 |
+
# ------------------------------
|
| 87 |
+
# Normalization & OCR-repair utilities (aligned to GLOBAL_SETTINGS)
|
| 88 |
+
# ------------------------------
|
| 89 |
+
def _apply_ocr_repair_rules(text: str) -> str:
|
| 90 |
+
s = text or ""
|
| 91 |
+
for pat, repl in GLOBAL_SETTINGS.get("ocr_repair_rules", []):
|
| 92 |
+
try:
|
| 93 |
+
s = re.sub(pat, repl, s, flags=re.I)
|
| 94 |
+
except re.error:
|
| 95 |
+
# skip invalid rule
|
| 96 |
+
continue
|
| 97 |
+
return s
|
| 98 |
+
|
| 99 |
+
def _normalize_text(text: str) -> str:
|
| 100 |
+
"""Normalize text according to GLOBAL_SETTINGS (readable normalized form)."""
|
| 101 |
+
s = _apply_ocr_repair_rules(text or "")
|
| 102 |
+
norm_cfg = GLOBAL_SETTINGS.get("normalize", {})
|
| 103 |
+
if norm_cfg.get("replace_smart_dashes", False):
|
| 104 |
+
s = s.replace("–", "-").replace("—", "-")
|
| 105 |
+
if norm_cfg.get("lower", False):
|
| 106 |
+
s = s.lower()
|
| 107 |
+
if norm_cfg.get("strip_punctuation", False):
|
| 108 |
+
# keep hyphen, ampersand, parentheses, slash, colon; drop other punctuation
|
| 109 |
+
s = re.sub(r"[^\w\s\-\&\(\)\/:]", " ", s)
|
| 110 |
+
if norm_cfg.get("collapse_whitespace", False):
|
| 111 |
+
s = re.sub(r"\s+", " ", s)
|
| 112 |
+
return s.strip()
|
| 113 |
+
|
| 114 |
+
def _compact_key(text: str) -> str:
|
| 115 |
+
"""Create compact key (no non-word chars) for deterministic lookup."""
|
| 116 |
+
if text is None:
|
| 117 |
+
return ""
|
| 118 |
+
normalized = _normalize_text(text)
|
| 119 |
+
return re.sub(r"[^\w]", "", normalized)
|
| 120 |
|
| 121 |
+
def map_header_using_extra_synonyms(header_text: str) -> Optional[str]:
|
| 122 |
"""
|
| 123 |
+
Try deterministic mapping using EXTRA_HEADER_SYNONYMS.
|
| 124 |
+
Return canonical label if found, else None.
|
|
|
|
|
|
|
|
|
|
| 125 |
"""
|
| 126 |
+
if not header_text:
|
| 127 |
+
return None
|
| 128 |
+
normalized = _normalize_text(header_text)
|
| 129 |
+
compact = _compact_key(header_text)
|
| 130 |
+
# try compact key
|
| 131 |
+
if compact in EXTRA_HEADER_SYNONYMS:
|
| 132 |
+
return EXTRA_HEADER_SYNONYMS[compact]
|
| 133 |
+
# try normalized key directly
|
| 134 |
+
if normalized in EXTRA_HEADER_SYNONYMS:
|
| 135 |
+
return EXTRA_HEADER_SYNONYMS[normalized]
|
| 136 |
+
# also try case-insensitive match on keys
|
| 137 |
+
for k, v in EXTRA_HEADER_SYNONYMS.items():
|
| 138 |
+
if k.lower() == normalized.lower() or k.lower() == compact.lower():
|
| 139 |
+
return v
|
| 140 |
+
return None
|
| 141 |
|
| 142 |
+
# ------------------------------
|
| 143 |
+
# Helpers to detect red font runs robustly
|
| 144 |
+
# ------------------------------
|
| 145 |
+
def _run_is_red(run) -> bool:
|
| 146 |
+
"""
|
| 147 |
+
Detect if a run is red. python-docx represents color by run.font.color.
|
| 148 |
+
We check RGB if available, or theme color 'red' as fallback.
|
| 149 |
+
"""
|
| 150 |
try:
|
| 151 |
+
color = run.font.color
|
| 152 |
+
if color is None:
|
| 153 |
+
return False
|
| 154 |
+
# If RGB is specified
|
| 155 |
+
rgb = getattr(color, "rgb", None)
|
| 156 |
+
if rgb is not None:
|
| 157 |
+
# rgb is a docx.shared.RGBColor or similar. Representable as 'FF0000' or integer tuple
|
| 158 |
+
hexval = ''.join("{:02X}".format(c) for c in rgb) if isinstance(rgb, (tuple, list)) else str(rgb)
|
| 159 |
+
# accept strings containing 'FF0000' or '0000FF'? (we want red)
|
| 160 |
+
# Accept any color where red component is high and others low-ish
|
| 161 |
+
try:
|
| 162 |
+
# If hex-like 'FF0000' -> interpret
|
| 163 |
+
hex_clean = re.sub(r"[^0-9A-Fa-f]", "", hexval)
|
| 164 |
+
if len(hex_clean) >= 6:
|
| 165 |
+
r = int(hex_clean[-6:-4], 16)
|
| 166 |
+
g = int(hex_clean[-4:-2], 16)
|
| 167 |
+
b = int(hex_clean[-2:], 16)
|
| 168 |
+
if r >= 150 and g < 120 and b < 120:
|
| 169 |
+
return True
|
| 170 |
+
except Exception:
|
| 171 |
+
pass
|
| 172 |
+
# fallback: theme color or color.theme_color value
|
| 173 |
+
theme_color = getattr(color, "theme_color", None)
|
| 174 |
+
if theme_color:
|
| 175 |
+
try:
|
| 176 |
+
if str(theme_color).lower().find("red") != -1:
|
| 177 |
+
return True
|
| 178 |
+
except Exception:
|
| 179 |
+
pass
|
| 180 |
except Exception:
|
|
|
|
| 181 |
pass
|
| 182 |
+
# final heuristic: if run.font.color.rgb as string contains 'FF' prefix and '00' for others
|
|
|
|
| 183 |
try:
|
| 184 |
+
if hasattr(run.font.color, "rgb") and run.font.color.rgb is not None:
|
| 185 |
+
s = str(run.font.color.rgb)
|
| 186 |
+
if "FF" in s and "0000" in s:
|
| 187 |
+
return True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
except Exception:
|
| 189 |
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
return False
|
| 191 |
|
| 192 |
+
# ------------------------------
|
| 193 |
+
# Extraction: paragraphs, headings, tables
|
| 194 |
+
# ------------------------------
|
| 195 |
+
def extract_from_docx(path: str) -> Dict[str, Any]:
|
| 196 |
+
doc = Document(path)
|
| 197 |
+
headings: List[str] = []
|
| 198 |
+
paragraphs_red: List[Dict[str, Any]] = []
|
| 199 |
+
red_runs: List[Dict[str, Any]] = []
|
| 200 |
+
tables_out: List[Dict[str, Any]] = []
|
| 201 |
+
|
| 202 |
+
# extract headings and paragraphs with red runs
|
| 203 |
+
for p_index, para in enumerate(doc.paragraphs):
|
| 204 |
+
text = para.text or ""
|
| 205 |
+
# identify heading level from style name if available
|
| 206 |
+
style_name = getattr(para.style, "name", "") if para.style is not None else ""
|
| 207 |
+
is_heading = bool(re.search(r"Heading\s*\d+|HEADING|TITLE|SUBTITLE", style_name, flags=re.I)) or bool(re.search(r"^(MAINTENANCE|MASS|FATIGUE|NHVAS|Vehicle Registration|CORRECTIVE)", text, flags=re.I))
|
| 208 |
+
if is_heading:
|
| 209 |
+
headings.append(text.strip())
|
| 210 |
+
|
| 211 |
+
# gather red runs in this paragraph
|
| 212 |
+
paragraph_red_texts = []
|
| 213 |
+
char_cursor = 0
|
| 214 |
+
for run in para.runs:
|
| 215 |
+
run_text = run.text or ""
|
| 216 |
+
run_len = len(run_text)
|
| 217 |
+
if _run_is_red(run) and run_text.strip():
|
| 218 |
+
# store a red run entry
|
| 219 |
+
rr = {
|
| 220 |
+
"text": run_text,
|
| 221 |
+
"paragraph_index": p_index,
|
| 222 |
+
"char_index": char_cursor,
|
| 223 |
+
"style_name": style_name
|
| 224 |
+
}
|
| 225 |
+
red_runs.append(rr)
|
| 226 |
+
paragraph_red_texts.append(run_text)
|
| 227 |
+
char_cursor += run_len
|
| 228 |
+
if paragraph_red_texts:
|
| 229 |
+
paragraphs_red.append({
|
| 230 |
+
"paragraph_index": p_index,
|
| 231 |
+
"text": text,
|
| 232 |
+
"red_texts": paragraph_red_texts,
|
| 233 |
+
"style_name": style_name
|
| 234 |
+
})
|
| 235 |
+
|
| 236 |
+
# extract tables
|
| 237 |
+
for t_index, table in enumerate(doc.tables):
|
| 238 |
+
# convert table to simple cell-text matrix
|
| 239 |
+
nrows = len(table.rows)
|
| 240 |
+
ncols = max(len(row.cells) for row in table.rows) if nrows > 0 else 0
|
| 241 |
+
headers = []
|
| 242 |
+
rows_text = []
|
| 243 |
+
rows_red_cells = []
|
| 244 |
+
|
| 245 |
+
# Attempt to treat first row as header if cells look like headers (bold or all-caps)
|
| 246 |
+
header_row = table.rows[0] if nrows > 0 else None
|
| 247 |
+
|
| 248 |
+
# build header texts & apply header mapping
|
| 249 |
+
if header_row:
|
| 250 |
+
for c_idx, cell in enumerate(header_row.cells):
|
| 251 |
+
cell_text = cell.text.strip()
|
| 252 |
+
# normalize & map using EXTRA_HEADER_SYNONYMS
|
| 253 |
+
mapped = map_header_using_extra_synonyms(cell_text)
|
| 254 |
+
if mapped:
|
| 255 |
+
header_label = mapped
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
else:
|
| 257 |
+
header_label = cell_text
|
| 258 |
+
headers.append(header_label)
|
| 259 |
+
|
| 260 |
+
# process all rows -> list of lists
|
| 261 |
+
for r_i, row in enumerate(table.rows):
|
| 262 |
+
row_texts = []
|
| 263 |
+
row_reds = []
|
| 264 |
+
for c_i, cell in enumerate(row.cells):
|
| 265 |
+
ct = cell.text.strip()
|
| 266 |
+
# gather red text from runs in this cell
|
| 267 |
+
red_in_cell = []
|
| 268 |
+
# docx cell may have paragraphs
|
| 269 |
+
for cpara in cell.paragraphs:
|
| 270 |
+
for run in cpara.runs:
|
| 271 |
+
if _run_is_red(run) and (run.text or "").strip():
|
| 272 |
+
red_in_cell.append((run.text or "").strip())
|
| 273 |
+
# compact red text into a single string if multiple runs present
|
| 274 |
+
red_text_joined = " ".join(red_in_cell) if red_in_cell else None
|
| 275 |
+
row_texts.append(ct)
|
| 276 |
+
row_reds.append(red_text_joined)
|
| 277 |
+
rows_text.append(row_texts)
|
| 278 |
+
rows_red_cells.append(row_reds)
|
| 279 |
+
|
| 280 |
+
tables_out.append({
|
| 281 |
+
"table_index": t_index,
|
| 282 |
+
"nrows": nrows,
|
| 283 |
+
"ncols": ncols,
|
| 284 |
+
"headers": headers,
|
| 285 |
+
"rows": rows_text,
|
| 286 |
+
"red_cells": rows_red_cells
|
| 287 |
+
})
|
| 288 |
+
|
| 289 |
+
# assemble output structure
|
| 290 |
+
out = {
|
| 291 |
+
"headings": headings,
|
| 292 |
+
"paragraphs": paragraphs_red,
|
| 293 |
+
"tables": tables_out,
|
| 294 |
+
"red_runs": red_runs,
|
| 295 |
+
# helpful metadata for downstream processing
|
| 296 |
+
"meta": {
|
| 297 |
+
"source_file": path,
|
| 298 |
+
"total_headings": len(headings),
|
| 299 |
+
"total_red_paragraphs": len(paragraphs_red),
|
| 300 |
+
"total_tables": len(tables_out),
|
| 301 |
+
"total_red_runs": len(red_runs)
|
| 302 |
+
}
|
| 303 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 304 |
return out
|
| 305 |
|
| 306 |
+
# ------------------------------
|
| 307 |
+
# Command-line interface
|
| 308 |
+
# ------------------------------
|
| 309 |
+
def main(argv):
|
| 310 |
+
if len(argv) < 3:
|
| 311 |
+
print("Usage: python extract_red_text.py input.docx output.json")
|
| 312 |
+
sys.exit(2)
|
| 313 |
+
input_docx = argv[1]
|
| 314 |
+
output_json = argv[2]
|
| 315 |
+
|
| 316 |
+
log.info("Extracting red text from: %s", input_docx)
|
| 317 |
+
try:
|
| 318 |
+
result = extract_from_docx(input_docx)
|
| 319 |
+
except Exception as exc:
|
| 320 |
+
log.exception("Failed to extract from docx: %s", exc)
|
| 321 |
+
raise
|
| 322 |
|
| 323 |
+
# Save JSON pretty-printed for debugging by default
|
| 324 |
+
try:
|
| 325 |
+
with open(output_json, "w", encoding="utf-8") as fh:
|
| 326 |
+
json.dump(result, fh, ensure_ascii=False, indent=2)
|
| 327 |
+
log.info("Saved extracted word JSON to: %s", output_json)
|
| 328 |
+
except Exception:
|
| 329 |
+
log.exception("Failed to write output JSON to %s", output_json)
|
| 330 |
+
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 331 |
|
| 332 |
+
# Print a short summary for logs / quick verification
|
| 333 |
+
log.info("Headings found: %d, Red paragraphs: %d, Tables: %d, Red runs: %d",
|
| 334 |
+
len(result.get("headings", [])),
|
| 335 |
+
len(result.get("paragraphs", [])),
|
| 336 |
+
len(result.get("tables", [])),
|
| 337 |
+
len(result.get("red_runs", []))
|
| 338 |
+
)
|
| 339 |
|
| 340 |
if __name__ == "__main__":
|
| 341 |
+
main(sys.argv)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|