Spaces:
Running
Running
Update updated_word.py
Browse files- updated_word.py +270 -517
updated_word.py
CHANGED
|
@@ -1,28 +1,24 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
-
|
| 7 |
-
-
|
| 8 |
-
-
|
| 9 |
-
-
|
| 10 |
-
-
|
| 11 |
-
- ADDED: header normalization, context-aware vehicle JSON selection,
|
| 12 |
-
management summary scoping, unmatched-headers logging
|
| 13 |
"""
|
| 14 |
|
| 15 |
import json
|
| 16 |
from docx import Document
|
| 17 |
from docx.shared import RGBColor
|
| 18 |
import re
|
| 19 |
-
from typing import Any
|
| 20 |
-
import os
|
| 21 |
|
| 22 |
# ============================================================================
|
| 23 |
-
#
|
| 24 |
# ============================================================================
|
| 25 |
-
|
| 26 |
HEADING_PATTERNS = {
|
| 27 |
"main": [
|
| 28 |
r"NHVAS\s+Audit\s+Summary\s+Report",
|
|
@@ -47,19 +43,14 @@ HEADING_PATTERNS = {
|
|
| 47 |
}
|
| 48 |
|
| 49 |
# ============================================================================
|
| 50 |
-
#
|
| 51 |
# ============================================================================
|
| 52 |
_unmatched_headers = {}
|
| 53 |
-
|
| 54 |
def record_unmatched_header(header: str):
|
| 55 |
if not header:
|
| 56 |
return
|
| 57 |
_unmatched_headers[header] = _unmatched_headers.get(header, 0) + 1
|
| 58 |
|
| 59 |
-
# ============================================================================
|
| 60 |
-
# UTILITY FUNCTIONS
|
| 61 |
-
# ============================================================================
|
| 62 |
-
|
| 63 |
def load_json(filepath):
|
| 64 |
with open(filepath, 'r', encoding='utf-8') as file:
|
| 65 |
return json.load(file)
|
|
@@ -89,10 +80,10 @@ def get_value_as_string(value, field_name=""):
|
|
| 89 |
elif len(value) == 1:
|
| 90 |
return str(value[0])
|
| 91 |
else:
|
|
|
|
| 92 |
if "australian company number" in field_name.lower() or "company number" in field_name.lower():
|
| 93 |
return value
|
| 94 |
-
|
| 95 |
-
return " ".join(str(v) for v in value)
|
| 96 |
else:
|
| 97 |
return str(value)
|
| 98 |
|
|
@@ -116,112 +107,124 @@ def has_red_text_in_paragraph(paragraph):
|
|
| 116 |
return True
|
| 117 |
return False
|
| 118 |
|
| 119 |
-
# New helper: normalize header text (removes parentheticals, punctuation, etc.)
|
| 120 |
def normalize_header_text(s: str) -> str:
|
| 121 |
if not s:
|
| 122 |
return ""
|
| 123 |
-
# remove parenthetical content
|
| 124 |
-
s = re.sub(r'\([^)]*\)', ' ', s)
|
| 125 |
-
# replace slashes
|
| 126 |
s = s.replace("/", " ")
|
| 127 |
-
# remove punctuation except # and %
|
| 128 |
s = re.sub(r'[^\w\s\#\%]', ' ', s)
|
| 129 |
s = re.sub(r'\s+', ' ', s).strip().lower()
|
| 130 |
-
#
|
| 131 |
s = s.replace('registrationno', 'registration number')
|
| 132 |
s = s.replace('registrationnumber', 'registration number')
|
| 133 |
-
s = s.replace('sub contracted', 'sub contractor')
|
| 134 |
s = s.replace('sub-contractor', 'sub contractor')
|
| 135 |
-
s = s.replace('
|
| 136 |
-
|
| 137 |
-
s = s.strip()
|
| 138 |
-
return s
|
| 139 |
|
| 140 |
# ============================================================================
|
| 141 |
-
# JSON
|
|
|
|
|
|
|
|
|
|
| 142 |
# ============================================================================
|
| 143 |
-
|
| 144 |
def find_matching_json_value(field_name, flat_json):
|
| 145 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
field_name = (field_name or "").strip()
|
| 147 |
if not field_name:
|
| 148 |
return None
|
| 149 |
|
| 150 |
-
#
|
| 151 |
if field_name in flat_json:
|
| 152 |
print(f" β
Direct match found for key '{field_name}'")
|
| 153 |
-
return flat_json[field_name]
|
| 154 |
|
| 155 |
-
# Case-insensitive exact
|
| 156 |
for key, value in flat_json.items():
|
| 157 |
if key.lower() == field_name.lower():
|
| 158 |
-
print(f" β
Case-insensitive match found for key '{field_name}'
|
| 159 |
-
return value
|
| 160 |
|
| 161 |
-
#
|
| 162 |
if field_name.lower().strip() == "print name":
|
| 163 |
operator_keys = [k for k in flat_json.keys() if "operator" in k.lower() and "print name" in k.lower()]
|
| 164 |
auditor_keys = [k for k in flat_json.keys() if "auditor" in k.lower() and ("print name" in k.lower() or "name" in k.lower())]
|
| 165 |
-
|
| 166 |
if operator_keys:
|
| 167 |
print(f" β
Operator Print Name match: '{field_name}' -> '{operator_keys[0]}'")
|
| 168 |
-
return flat_json[operator_keys[0]]
|
| 169 |
elif auditor_keys:
|
| 170 |
print(f" β
Auditor Name match: '{field_name}' -> '{auditor_keys[0]}'")
|
| 171 |
-
return flat_json[auditor_keys[0]]
|
| 172 |
|
| 173 |
-
# Suffix
|
| 174 |
for key, value in flat_json.items():
|
| 175 |
if '.' in key and key.split('.')[-1].lower() == field_name.lower():
|
| 176 |
-
print(f" β
Suffix match found for key '{field_name}'
|
| 177 |
-
return value
|
| 178 |
|
| 179 |
-
# Clean
|
| 180 |
clean_field = re.sub(r'[^\w\s]', ' ', field_name.lower()).strip()
|
| 181 |
clean_field = re.sub(r'\s+', ' ', clean_field)
|
| 182 |
for key, value in flat_json.items():
|
| 183 |
clean_key = re.sub(r'[^\w\s]', ' ', key.lower()).strip()
|
| 184 |
clean_key = re.sub(r'\s+', ' ', clean_key)
|
| 185 |
if clean_field == clean_key:
|
| 186 |
-
print(f" β
Clean match found for key '{field_name}'
|
| 187 |
-
return value
|
| 188 |
|
| 189 |
-
#
|
| 190 |
field_words = set(word.lower() for word in re.findall(r'\b\w+\b', field_name) if len(word) > 2)
|
| 191 |
if not field_words:
|
| 192 |
return None
|
| 193 |
|
| 194 |
-
best_match = None
|
| 195 |
-
best_score = 0
|
| 196 |
best_key = None
|
|
|
|
|
|
|
| 197 |
|
| 198 |
for key, value in flat_json.items():
|
| 199 |
key_words = set(word.lower() for word in re.findall(r'\b\w+\b', key) if len(word) > 2)
|
| 200 |
if not key_words:
|
| 201 |
continue
|
| 202 |
|
| 203 |
-
|
| 204 |
-
if
|
| 205 |
-
|
| 206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
final_score = (similarity * 0.6) + (coverage * 0.4)
|
| 208 |
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
|
| 214 |
-
|
|
|
|
| 215 |
print(f" β
Fuzzy match found for key '{field_name}' with JSON key '{best_key}' (score: {best_score:.2f})")
|
| 216 |
-
return
|
| 217 |
|
| 218 |
print(f" β No match found for '{field_name}'")
|
| 219 |
return None
|
| 220 |
|
| 221 |
# ============================================================================
|
| 222 |
-
#
|
| 223 |
# ============================================================================
|
| 224 |
-
|
| 225 |
def extract_red_text_segments(cell):
|
| 226 |
red_segments = []
|
| 227 |
for para_idx, paragraph in enumerate(cell.paragraphs):
|
|
@@ -234,52 +237,37 @@ def extract_red_text_segments(cell):
|
|
| 234 |
segment_runs.append((para_idx, run_idx, run))
|
| 235 |
else:
|
| 236 |
if segment_runs:
|
| 237 |
-
red_segments.append({
|
| 238 |
-
'text': current_segment,
|
| 239 |
-
'runs': segment_runs.copy(),
|
| 240 |
-
'paragraph_idx': para_idx
|
| 241 |
-
})
|
| 242 |
current_segment = ""
|
| 243 |
segment_runs = []
|
| 244 |
if segment_runs:
|
| 245 |
-
red_segments.append({
|
| 246 |
-
'text': current_segment,
|
| 247 |
-
'runs': segment_runs.copy(),
|
| 248 |
-
'paragraph_idx': para_idx
|
| 249 |
-
})
|
| 250 |
return red_segments
|
| 251 |
|
| 252 |
def replace_all_red_segments(red_segments, replacement_text):
|
| 253 |
if not red_segments:
|
| 254 |
return 0
|
| 255 |
-
|
| 256 |
if '\n' in replacement_text:
|
| 257 |
replacement_lines = replacement_text.split('\n')
|
| 258 |
else:
|
| 259 |
replacement_lines = [replacement_text]
|
| 260 |
-
|
| 261 |
replacements_made = 0
|
| 262 |
-
|
| 263 |
-
if
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
for _, _, run in first_segment['runs'][1:]:
|
| 271 |
-
run.text = ''
|
| 272 |
-
|
| 273 |
for segment in red_segments[1:]:
|
| 274 |
for _, _, run in segment['runs']:
|
| 275 |
run.text = ''
|
| 276 |
-
|
| 277 |
if len(replacement_lines) > 1 and red_segments:
|
| 278 |
try:
|
| 279 |
first_run = red_segments[0]['runs'][0][2]
|
| 280 |
paragraph = first_run.element.getparent()
|
| 281 |
from docx.oxml import OxmlElement
|
| 282 |
-
parent = first_run.element.getparent()
|
| 283 |
for line in replacement_lines[1:]:
|
| 284 |
if line.strip():
|
| 285 |
br = OxmlElement('w:br')
|
|
@@ -291,7 +279,6 @@ def replace_all_red_segments(red_segments, replacement_text):
|
|
| 291 |
first_run = red_segments[0]['runs'][0][2]
|
| 292 |
first_run.text = ' '.join(replacement_lines)
|
| 293 |
first_run.font.color.rgb = RGBColor(0, 0, 0)
|
| 294 |
-
|
| 295 |
return replacements_made
|
| 296 |
|
| 297 |
def replace_single_segment(segment, replacement_text):
|
|
@@ -311,7 +298,7 @@ def replace_red_text_in_cell(cell, replacement_text):
|
|
| 311 |
return replace_all_red_segments(red_segments, replacement_text)
|
| 312 |
|
| 313 |
# ============================================================================
|
| 314 |
-
#
|
| 315 |
# ============================================================================
|
| 316 |
|
| 317 |
def handle_australian_company_number(row, company_numbers):
|
|
@@ -327,57 +314,27 @@ def handle_australian_company_number(row, company_numbers):
|
|
| 327 |
return replacements_made
|
| 328 |
|
| 329 |
def handle_vehicle_registration_table(table, flat_json):
|
| 330 |
-
"""
|
|
|
|
|
|
|
|
|
|
| 331 |
replacements_made = 0
|
| 332 |
|
| 333 |
-
#
|
| 334 |
-
table_text = ""
|
| 335 |
-
for r in table.rows[:3]:
|
| 336 |
-
for c in r.cells:
|
| 337 |
-
table_text += get_clean_text(c).lower() + " "
|
| 338 |
-
|
| 339 |
-
# 1) Detect the most relevant vehicle-related JSON section using context tokens
|
| 340 |
vehicle_section = None
|
| 341 |
-
|
| 342 |
-
if
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
context_tokens.append("fatigue")
|
| 348 |
-
|
| 349 |
-
# candidate keys that mention 'registration' or 'vehicle'
|
| 350 |
-
candidates = []
|
| 351 |
-
for key, value in flat_json.items():
|
| 352 |
-
k = key.lower()
|
| 353 |
-
if "registration" in k or "vehicle registration" in k or "vehicle" in k:
|
| 354 |
-
candidates.append((key, value))
|
| 355 |
-
|
| 356 |
-
# prefer candidates whose key contains one of the context tokens
|
| 357 |
-
if candidates and context_tokens:
|
| 358 |
-
for token in context_tokens:
|
| 359 |
-
for k, v in candidates:
|
| 360 |
-
if token in k.lower():
|
| 361 |
-
vehicle_section = v if isinstance(v, (list, dict)) else {k: v}
|
| 362 |
-
print(f" β
Found vehicle data by context token '{token}' in key '{k}'")
|
| 363 |
-
break
|
| 364 |
-
if vehicle_section:
|
| 365 |
-
break
|
| 366 |
-
|
| 367 |
-
# fallback: choose candidate containing 'registration' explicitly
|
| 368 |
-
if vehicle_section is None and candidates:
|
| 369 |
-
for k, v in candidates:
|
| 370 |
-
if "registration" in k.lower():
|
| 371 |
-
vehicle_section = v if isinstance(v, (list, dict)) else {k: v}
|
| 372 |
-
print(f" β
Fallback vehicle data chosen from '{k}'")
|
| 373 |
-
break
|
| 374 |
|
| 375 |
# fallback: collect flattened keys that look like vehicle columns
|
| 376 |
if vehicle_section is None:
|
| 377 |
potential_columns = {}
|
| 378 |
for key, value in flat_json.items():
|
| 379 |
lk = key.lower()
|
| 380 |
-
if any(col_name in lk for col_name in ["registration number", "sub-contractor", "weight verification", "rfs suspension", "trip records", "
|
| 381 |
if "." in key:
|
| 382 |
column_name = key.split(".")[-1]
|
| 383 |
else:
|
|
@@ -391,42 +348,36 @@ def handle_vehicle_registration_table(table, flat_json):
|
|
| 391 |
print(f" β Vehicle registration data not found in JSON")
|
| 392 |
return 0
|
| 393 |
|
| 394 |
-
#
|
| 395 |
if isinstance(vehicle_section, list):
|
| 396 |
-
# if
|
| 397 |
if vehicle_section and isinstance(vehicle_section[0], dict):
|
| 398 |
flattened = {}
|
| 399 |
for entry in vehicle_section:
|
| 400 |
for k, v in entry.items():
|
| 401 |
flattened.setdefault(k, []).append(v)
|
| 402 |
vehicle_section = flattened
|
|
|
|
|
|
|
|
|
|
| 403 |
|
| 404 |
if not isinstance(vehicle_section, dict):
|
| 405 |
-
# convert single scalar to dict
|
| 406 |
try:
|
| 407 |
vehicle_section = dict(vehicle_section)
|
| 408 |
except Exception:
|
| 409 |
-
vehicle_section = {
|
| 410 |
|
| 411 |
print(f" β
Found vehicle registration data with {len(vehicle_section)} columns")
|
| 412 |
|
| 413 |
-
# Find header row
|
| 414 |
header_row_idx = -1
|
| 415 |
header_row = None
|
| 416 |
for row_idx, row in enumerate(table.rows):
|
| 417 |
row_text = " ".join(get_clean_text(cell).lower() for cell in row.cells)
|
| 418 |
-
if "registration" in row_text and "number" in row_text:
|
| 419 |
header_row_idx = row_idx
|
| 420 |
header_row = row
|
| 421 |
break
|
| 422 |
-
if header_row_idx == -1:
|
| 423 |
-
# try alternative detection: a row with 'registration' or 'reg no'
|
| 424 |
-
for row_idx, row in enumerate(table.rows):
|
| 425 |
-
row_text = " ".join(get_clean_text(cell).lower() for cell in row.cells)
|
| 426 |
-
if "registration" in row_text or "reg no" in row_text or "regno" in row_text:
|
| 427 |
-
header_row_idx = row_idx
|
| 428 |
-
header_row = row
|
| 429 |
-
break
|
| 430 |
|
| 431 |
if header_row_idx == -1:
|
| 432 |
print(f" β Could not find header row in vehicle table")
|
|
@@ -434,34 +385,26 @@ def handle_vehicle_registration_table(table, flat_json):
|
|
| 434 |
|
| 435 |
print(f" β
Found header row at index {header_row_idx}")
|
| 436 |
|
| 437 |
-
#
|
| 438 |
-
column_mapping = {}
|
| 439 |
-
# build normalized master map from vehicle_section keys
|
| 440 |
master_labels = {}
|
| 441 |
for orig_key in vehicle_section.keys():
|
| 442 |
norm = normalize_header_text(str(orig_key))
|
| 443 |
if norm:
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
"trip records", "fault recording reporting", "daily checks", "roadworthiness certificates",
|
| 451 |
-
"maintenance records", "fault repair"
|
| 452 |
-
]
|
| 453 |
-
for syn in fallback_synonyms:
|
| 454 |
-
norm = normalize_header_text(syn)
|
| 455 |
-
if norm and norm not in master_labels:
|
| 456 |
-
master_labels.setdefault(norm, syn)
|
| 457 |
|
| 458 |
-
#
|
|
|
|
| 459 |
for col_idx, cell in enumerate(header_row.cells):
|
| 460 |
header_text = get_clean_text(cell).strip()
|
| 461 |
if not header_text:
|
| 462 |
continue
|
| 463 |
-
|
| 464 |
-
if
|
| 465 |
continue
|
| 466 |
|
| 467 |
norm_header = normalize_header_text(header_text)
|
|
@@ -473,7 +416,7 @@ def handle_vehicle_registration_table(table, flat_json):
|
|
| 473 |
best_match = master_labels[norm_header]
|
| 474 |
best_score = 1.0
|
| 475 |
else:
|
| 476 |
-
# token overlap
|
| 477 |
header_tokens = set(t for t in norm_header.split() if len(t) > 2)
|
| 478 |
for norm_key, orig_label in master_labels.items():
|
| 479 |
key_tokens = set(t for t in norm_key.split() if len(t) > 2)
|
|
@@ -483,7 +426,7 @@ def handle_vehicle_registration_table(table, flat_json):
|
|
| 483 |
if common:
|
| 484 |
score = len(common) / max(1, len(header_tokens.union(key_tokens)))
|
| 485 |
else:
|
| 486 |
-
# substring fallback
|
| 487 |
if norm_header in norm_key or norm_key in norm_header:
|
| 488 |
score = min(len(norm_header), len(norm_key)) / max(len(norm_header), len(norm_key))
|
| 489 |
else:
|
|
@@ -492,18 +435,26 @@ def handle_vehicle_registration_table(table, flat_json):
|
|
| 492 |
best_score = score
|
| 493 |
best_match = orig_label
|
| 494 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 495 |
if best_match and best_score >= 0.30:
|
| 496 |
column_mapping[col_idx] = best_match
|
| 497 |
-
print(f" π Column {col_idx}: '{header_text}' -> '{best_match}' (norm:
|
| 498 |
else:
|
| 499 |
-
print(f" β οΈ No mapping found for '{header_text}' (norm:
|
| 500 |
record_unmatched_header(header_text)
|
| 501 |
|
| 502 |
if not column_mapping:
|
| 503 |
print(f" β No column mappings found")
|
| 504 |
return 0
|
| 505 |
|
| 506 |
-
# Determine
|
| 507 |
max_data_rows = 0
|
| 508 |
for json_key, data in vehicle_section.items():
|
| 509 |
if isinstance(data, list):
|
|
@@ -511,51 +462,39 @@ def handle_vehicle_registration_table(table, flat_json):
|
|
| 511 |
|
| 512 |
print(f" π Need to populate {max_data_rows} data rows")
|
| 513 |
|
| 514 |
-
#
|
| 515 |
for data_row_index in range(max_data_rows):
|
| 516 |
table_row_idx = header_row_idx + 1 + data_row_index
|
| 517 |
-
|
| 518 |
if table_row_idx >= len(table.rows):
|
| 519 |
-
print(f" β οΈ Row {table_row_idx + 1} doesn't exist
|
| 520 |
-
|
| 521 |
-
new_row = table.add_row()
|
| 522 |
-
print(f" β
Successfully added row {len(table.rows)} to the table")
|
| 523 |
|
| 524 |
row = table.rows[table_row_idx]
|
| 525 |
print(f" π Processing data row {table_row_idx + 1} (vehicle {data_row_index + 1})")
|
| 526 |
-
|
| 527 |
for col_idx, json_key in column_mapping.items():
|
| 528 |
if col_idx < len(row.cells):
|
| 529 |
cell = row.cells[col_idx]
|
| 530 |
-
|
| 531 |
column_data = vehicle_section.get(json_key, [])
|
| 532 |
if isinstance(column_data, list) and data_row_index < len(column_data):
|
| 533 |
replacement_value = str(column_data[data_row_index])
|
| 534 |
-
|
| 535 |
cell_text = get_clean_text(cell)
|
| 536 |
if has_red_text(cell) or not cell_text.strip():
|
| 537 |
if not cell_text.strip():
|
| 538 |
cell.text = replacement_value
|
| 539 |
replacements_made += 1
|
| 540 |
-
print(f" -> Added '{replacement_value}' to empty cell (
|
| 541 |
else:
|
| 542 |
cell_replacements = replace_red_text_in_cell(cell, replacement_value)
|
| 543 |
replacements_made += cell_replacements
|
| 544 |
if cell_replacements > 0:
|
| 545 |
-
print(f" -> Replaced red text with '{replacement_value}' (
|
| 546 |
|
| 547 |
return replacements_made
|
| 548 |
|
| 549 |
def handle_attendance_list_table_enhanced(table, flat_json):
|
| 550 |
-
"""
|
| 551 |
replacements_made = 0
|
| 552 |
-
|
| 553 |
-
attendance_patterns = [
|
| 554 |
-
"attendance list",
|
| 555 |
-
"names and position titles",
|
| 556 |
-
"attendees"
|
| 557 |
-
]
|
| 558 |
-
|
| 559 |
found_attendance_row = None
|
| 560 |
for row_idx, row in enumerate(table.rows[:3]):
|
| 561 |
for cell_idx, cell in enumerate(row.cells):
|
|
@@ -566,7 +505,6 @@ def handle_attendance_list_table_enhanced(table, flat_json):
|
|
| 566 |
break
|
| 567 |
if found_attendance_row is not None:
|
| 568 |
break
|
| 569 |
-
|
| 570 |
if found_attendance_row is None:
|
| 571 |
return 0
|
| 572 |
|
|
@@ -577,42 +515,38 @@ def handle_attendance_list_table_enhanced(table, flat_json):
|
|
| 577 |
"attendance list",
|
| 578 |
"attendees"
|
| 579 |
]
|
| 580 |
-
|
| 581 |
print(f" π Searching for attendance data in JSON...")
|
| 582 |
-
|
| 583 |
for search_key in attendance_search_keys:
|
| 584 |
-
|
| 585 |
-
if
|
| 586 |
-
|
|
|
|
| 587 |
print(f" π Raw value: {attendance_value}")
|
| 588 |
break
|
| 589 |
-
|
| 590 |
if attendance_value is None:
|
| 591 |
print(f" β No attendance data found in JSON")
|
| 592 |
return 0
|
| 593 |
|
|
|
|
| 594 |
target_cell = None
|
| 595 |
print(f" π Scanning ALL cells in attendance table for red text...")
|
| 596 |
-
|
| 597 |
for row_idx, row in enumerate(table.rows):
|
| 598 |
for cell_idx, cell in enumerate(row.cells):
|
| 599 |
if has_red_text(cell):
|
| 600 |
-
print(f" π― Found red text in row {row_idx + 1}, cell {cell_idx + 1}")
|
| 601 |
-
|
| 602 |
red_text = ""
|
| 603 |
for paragraph in cell.paragraphs:
|
| 604 |
for run in paragraph.runs:
|
| 605 |
if is_red(run):
|
| 606 |
red_text += run.text
|
| 607 |
-
|
| 608 |
-
|
| 609 |
-
|
| 610 |
-
|
| 611 |
-
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
|
| 615 |
-
if target_cell
|
| 616 |
break
|
| 617 |
|
| 618 |
if target_cell is None:
|
|
@@ -621,60 +555,44 @@ def handle_attendance_list_table_enhanced(table, flat_json):
|
|
| 621 |
|
| 622 |
if has_red_text(target_cell):
|
| 623 |
print(f" π§ Replacing red text with properly formatted attendance list...")
|
| 624 |
-
|
| 625 |
if isinstance(attendance_value, list):
|
| 626 |
attendance_list = [str(item).strip() for item in attendance_value if str(item).strip()]
|
| 627 |
else:
|
| 628 |
attendance_list = [str(attendance_value).strip()]
|
| 629 |
-
|
| 630 |
print(f" π Attendance items to add:")
|
| 631 |
for i, item in enumerate(attendance_list):
|
| 632 |
print(f" {i+1}. {item}")
|
| 633 |
-
|
| 634 |
replacement_text = "\n".join(attendance_list)
|
| 635 |
cell_replacements = replace_red_text_in_cell(target_cell, replacement_text)
|
| 636 |
replacements_made += cell_replacements
|
| 637 |
-
|
| 638 |
print(f" β
Added {len(attendance_list)} attendance items")
|
| 639 |
print(f" π Replacements made: {cell_replacements}")
|
| 640 |
-
|
| 641 |
return replacements_made
|
| 642 |
|
| 643 |
def fix_management_summary_details_column(table, flat_json):
|
| 644 |
-
"""
|
| 645 |
replacements_made = 0
|
| 646 |
-
|
| 647 |
print(f" π― FIX: Management Summary DETAILS column processing")
|
| 648 |
-
|
| 649 |
-
# Build table text to detect management type(s)
|
| 650 |
table_text = ""
|
| 651 |
for row in table.rows[:3]:
|
| 652 |
for cell in row.cells:
|
| 653 |
table_text += get_clean_text(cell).lower() + " "
|
| 654 |
-
|
| 655 |
-
# Identify which management types this table likely represents
|
| 656 |
mgmt_types = []
|
| 657 |
if "mass management" in table_text or "mass" in table_text:
|
| 658 |
mgmt_types.append("Mass Management Summary")
|
| 659 |
if "maintenance management" in table_text or "maintenance" in table_text:
|
| 660 |
mgmt_types.append("Maintenance Management Summary")
|
| 661 |
-
if "fatigue management" in table_text or "fatigue" in table_text
|
| 662 |
mgmt_types.append("Fatigue Management Summary")
|
| 663 |
-
|
| 664 |
if not mgmt_types:
|
| 665 |
-
# fallback: try fuzzy detection through headings or presence of "Std 5." etc.
|
| 666 |
if any("std 5" in get_clean_text(c).lower() for r in table.rows for c in r.cells):
|
| 667 |
mgmt_types.append("Mass Management Summary")
|
| 668 |
-
|
| 669 |
if not mgmt_types:
|
| 670 |
return 0
|
| 671 |
-
|
| 672 |
for mgmt_type in mgmt_types:
|
| 673 |
print(f" β
Confirmed {mgmt_type} table processing")
|
| 674 |
-
# find data dict in flat_json for mgmt_type
|
| 675 |
mgmt_data = flat_json.get(mgmt_type)
|
| 676 |
if not isinstance(mgmt_data, dict):
|
| 677 |
-
# attempt suffix based keys in flat_json
|
| 678 |
for key in flat_json.keys():
|
| 679 |
if mgmt_type.split()[0].lower() in key.lower() and "summary" in key.lower():
|
| 680 |
mgmt_data = flat_json.get(key)
|
|
@@ -682,26 +600,18 @@ def fix_management_summary_details_column(table, flat_json):
|
|
| 682 |
if not isinstance(mgmt_data, dict):
|
| 683 |
print(f" β οΈ No JSON management dict found for {mgmt_type}, skipping this type")
|
| 684 |
continue
|
| 685 |
-
|
| 686 |
-
# Process rows looking for Std 5. and Std 6.
|
| 687 |
for row_idx, row in enumerate(table.rows):
|
| 688 |
if len(row.cells) >= 2:
|
| 689 |
standard_cell = row.cells[0]
|
| 690 |
details_cell = row.cells[1]
|
| 691 |
standard_text = get_clean_text(standard_cell).strip().lower()
|
| 692 |
-
|
| 693 |
-
# Std 5.
|
| 694 |
if "std 5" in standard_text or "verification" in standard_text:
|
| 695 |
if has_red_text(details_cell):
|
| 696 |
-
print(f" π Found Std 5/Verification with red text")
|
| 697 |
-
# try to find the appropriate key in mgmt_data
|
| 698 |
std_val = None
|
| 699 |
-
# exact key variants
|
| 700 |
for candidate in ("Std 5. Verification", "Std 5 Verification", "Std 5", "Verification"):
|
| 701 |
std_val = mgmt_data.get(candidate)
|
| 702 |
if std_val is not None:
|
| 703 |
break
|
| 704 |
-
# fuzzy fallback
|
| 705 |
if std_val is None:
|
| 706 |
for k, v in mgmt_data.items():
|
| 707 |
if 'std 5' in k.lower() or 'verification' in k.lower():
|
|
@@ -713,11 +623,8 @@ def fix_management_summary_details_column(table, flat_json):
|
|
| 713 |
replacements_made += cell_replacements
|
| 714 |
if cell_replacements:
|
| 715 |
print(f" β
Replaced Std 5. Verification details for {mgmt_type}")
|
| 716 |
-
|
| 717 |
-
# Std 6.
|
| 718 |
if "std 6" in standard_text or "internal review" in standard_text:
|
| 719 |
if has_red_text(details_cell):
|
| 720 |
-
print(f" π Found Std 6/Internal Review with red text")
|
| 721 |
std_val = None
|
| 722 |
for candidate in ("Std 6. Internal Review", "Std 6 Internal Review", "Std 6", "Internal Review"):
|
| 723 |
std_val = mgmt_data.get(candidate)
|
|
@@ -734,23 +641,20 @@ def fix_management_summary_details_column(table, flat_json):
|
|
| 734 |
replacements_made += cell_replacements
|
| 735 |
if cell_replacements:
|
| 736 |
print(f" β
Replaced Std 6. Internal Review details for {mgmt_type}")
|
| 737 |
-
|
| 738 |
return replacements_made
|
| 739 |
|
| 740 |
-
#
|
|
|
|
|
|
|
| 741 |
def fix_operator_declaration_empty_values(table, flat_json):
|
| 742 |
replacements_made = 0
|
| 743 |
-
|
| 744 |
print(f" π― FIX: Operator Declaration empty values processing")
|
| 745 |
-
|
| 746 |
table_context = ""
|
| 747 |
for row in table.rows:
|
| 748 |
for cell in row.cells:
|
| 749 |
table_context += get_clean_text(cell).lower() + " "
|
| 750 |
-
|
| 751 |
if not ("print name" in table_context and "position title" in table_context):
|
| 752 |
return 0
|
| 753 |
-
|
| 754 |
print(f" β
Confirmed Operator Declaration table")
|
| 755 |
|
| 756 |
def parse_name_and_position(value):
|
|
@@ -761,16 +665,15 @@ def fix_operator_declaration_empty_values(table, flat_json):
|
|
| 761 |
return None, None
|
| 762 |
if len(value) == 1:
|
| 763 |
return str(value[0]).strip(), None
|
|
|
|
| 764 |
first = str(value[0]).strip()
|
| 765 |
second = str(value[1]).strip()
|
| 766 |
if first and second:
|
| 767 |
return first, second
|
| 768 |
value = " ".join(str(v).strip() for v in value if str(v).strip())
|
| 769 |
-
|
| 770 |
s = str(value).strip()
|
| 771 |
if not s:
|
| 772 |
return None, None
|
| 773 |
-
|
| 774 |
parts = re.split(r'\s+[-ββ]\s+|\s*,\s*|\s*\|\s*', s)
|
| 775 |
if len(parts) >= 2:
|
| 776 |
left = parts[0].strip()
|
|
@@ -782,7 +685,6 @@ def fix_operator_declaration_empty_values(table, flat_json):
|
|
| 782 |
if any(ind in left.lower() for ind in role_indicators) and not any(ind in right.lower() for ind in role_indicators):
|
| 783 |
return right, left
|
| 784 |
return left, right
|
| 785 |
-
|
| 786 |
tokens = s.split()
|
| 787 |
if len(tokens) >= 2:
|
| 788 |
last = tokens[-1]
|
|
@@ -790,35 +692,35 @@ def fix_operator_declaration_empty_values(table, flat_json):
|
|
| 790 |
'coordinator', 'driver', 'operator', 'representative', 'chief']
|
| 791 |
if any(ind == last.lower() for ind in role_indicators):
|
| 792 |
return " ".join(tokens[:-1]), last
|
| 793 |
-
|
| 794 |
return s, None
|
| 795 |
|
| 796 |
for row_idx, row in enumerate(table.rows):
|
| 797 |
if len(row.cells) >= 2:
|
| 798 |
cell1_text = get_clean_text(row.cells[0]).strip().lower()
|
| 799 |
cell2_text = get_clean_text(row.cells[1]).strip().lower()
|
| 800 |
-
|
| 801 |
if "print name" in cell1_text and "position" in cell2_text:
|
| 802 |
print(f" π Found header row at {row_idx + 1}")
|
| 803 |
-
|
| 804 |
if row_idx + 1 < len(table.rows):
|
| 805 |
data_row = table.rows[row_idx + 1]
|
| 806 |
if len(data_row.cells) >= 2:
|
| 807 |
name_cell = data_row.cells[0]
|
| 808 |
position_cell = data_row.cells[1]
|
| 809 |
-
|
| 810 |
name_text = get_clean_text(name_cell).strip()
|
| 811 |
position_text = get_clean_text(position_cell).strip()
|
| 812 |
print(f" π Current values: Name='{name_text}', Position='{position_text}'")
|
| 813 |
|
| 814 |
-
|
| 815 |
-
|
| 816 |
-
|
|
|
|
|
|
|
|
|
|
| 817 |
|
| 818 |
-
position_value =
|
| 819 |
-
if
|
| 820 |
-
position_value = find_matching_json_value("Position Title", flat_json)
|
| 821 |
|
|
|
|
| 822 |
parsed_name_from_nameval, parsed_pos_from_nameval = parse_name_and_position(name_value) if name_value is not None else (None, None)
|
| 823 |
parsed_name_from_posval, parsed_pos_from_posval = parse_name_and_position(position_value) if position_value is not None else (None, None)
|
| 824 |
|
|
@@ -830,13 +732,43 @@ def fix_operator_declaration_empty_values(table, flat_json):
|
|
| 830 |
elif name_value is not None:
|
| 831 |
final_name = get_value_as_string(name_value)
|
| 832 |
|
| 833 |
-
|
| 834 |
-
|
| 835 |
-
|
| 836 |
-
|
| 837 |
-
|
| 838 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 839 |
|
|
|
|
| 840 |
if isinstance(final_name, list):
|
| 841 |
final_name = " ".join(str(x) for x in final_name).strip()
|
| 842 |
if isinstance(final_pos, list):
|
|
@@ -853,8 +785,9 @@ def fix_operator_declaration_empty_values(table, flat_json):
|
|
| 853 |
low = name_str.lower()
|
| 854 |
if any(bp in low for bp in bad_phrases):
|
| 855 |
return False
|
| 856 |
-
return len(name_str) > 1
|
| 857 |
|
|
|
|
| 858 |
if (not name_text or has_red_text(name_cell)) and final_name and looks_like_person(final_name):
|
| 859 |
if has_red_text(name_cell):
|
| 860 |
replace_red_text_in_cell(name_cell, final_name)
|
|
@@ -863,7 +796,8 @@ def fix_operator_declaration_empty_values(table, flat_json):
|
|
| 863 |
replacements_made += 1
|
| 864 |
print(f" β
Updated Print Name -> '{final_name}'")
|
| 865 |
|
| 866 |
-
if
|
|
|
|
| 867 |
if has_red_text(position_cell):
|
| 868 |
replace_red_text_in_cell(position_cell, final_pos)
|
| 869 |
else:
|
|
@@ -890,9 +824,9 @@ def handle_multiple_red_segments_in_cell(cell, flat_json):
|
|
| 890 |
for i, segment in enumerate(red_segments):
|
| 891 |
segment_text = segment['text'].strip()
|
| 892 |
if segment_text:
|
| 893 |
-
|
| 894 |
-
if
|
| 895 |
-
replacement_text = get_value_as_string(
|
| 896 |
if replace_single_segment(segment, replacement_text):
|
| 897 |
replacements_made += 1
|
| 898 |
print(f" β
Replaced segment {i+1}: '{segment_text}' -> '{replacement_text}'")
|
|
@@ -910,9 +844,9 @@ def handle_nature_business_multiline_fix(cell, flat_json):
|
|
| 910 |
return 0
|
| 911 |
nature_indicators = ["transport", "logistics", "freight", "delivery", "trucking", "haulage"]
|
| 912 |
if any(indicator in red_text.lower() for indicator in nature_indicators):
|
| 913 |
-
|
| 914 |
-
if
|
| 915 |
-
replacement_text = get_value_as_string(
|
| 916 |
cell_replacements = replace_red_text_in_cell(cell, replacement_text)
|
| 917 |
replacements_made += cell_replacements
|
| 918 |
print(f" β
Fixed Nature of Business multiline content")
|
|
@@ -930,229 +864,85 @@ def handle_management_summary_fix(cell, flat_json):
|
|
| 930 |
return 0
|
| 931 |
management_types = ["Mass Management Summary", "Maintenance Management Summary", "Fatigue Management Summary"]
|
| 932 |
for mgmt_type in management_types:
|
| 933 |
-
if mgmt_type in flat_json:
|
| 934 |
mgmt_data = flat_json[mgmt_type]
|
| 935 |
-
|
| 936 |
-
|
| 937 |
-
if
|
| 938 |
-
|
| 939 |
-
|
| 940 |
-
|
| 941 |
-
|
| 942 |
-
cell_replacements = replace_red_text_in_cell(cell, replacement_text)
|
| 943 |
-
replacements_made += cell_replacements
|
| 944 |
-
print(f" β
Fixed {mgmt_type} - {std_key}")
|
| 945 |
-
return replacements_made
|
| 946 |
-
return replacements_made
|
| 947 |
-
|
| 948 |
-
# ============================================================================
|
| 949 |
-
# SMALL OPERATOR/AUDITOR TABLE HANDLER (skip if already processed)
|
| 950 |
-
# ============================================================================
|
| 951 |
-
|
| 952 |
-
def handle_operator_declaration_fix(table, flat_json):
|
| 953 |
-
replacements_made = 0
|
| 954 |
-
|
| 955 |
-
if getattr(table, "_processed_operator_declaration", False):
|
| 956 |
-
print(f" βοΈ Skipping - Operator Declaration table already processed")
|
| 957 |
-
return 0
|
| 958 |
-
|
| 959 |
-
if len(table.rows) > 4:
|
| 960 |
-
return 0
|
| 961 |
-
|
| 962 |
-
replaced = fix_operator_declaration_empty_values(table, flat_json)
|
| 963 |
-
replacements_made += replaced
|
| 964 |
-
if replaced:
|
| 965 |
-
return replacements_made
|
| 966 |
-
|
| 967 |
-
def is_date_like(s: str) -> bool:
|
| 968 |
-
if not s:
|
| 969 |
-
return False
|
| 970 |
-
s = s.strip()
|
| 971 |
-
month_names = r"(jan|feb|mar|apr|may|jun|jul|aug|sep|sept|oct|nov|dec|january|february|march|april|may|june|july|august|september|october|november|december)"
|
| 972 |
-
if re.search(r"\bDate\b", s, re.IGNORECASE):
|
| 973 |
-
return True
|
| 974 |
-
if re.search(r"\b\d{1,2}(?:st|nd|rd|th)?\b\s+" + month_names, s, re.IGNORECASE):
|
| 975 |
-
return True
|
| 976 |
-
if re.search(month_names + r".*\b\d{4}\b", s, re.IGNORECASE):
|
| 977 |
-
return True
|
| 978 |
-
if re.search(r"\b\d{1,2}[\/\.\-]\d{1,2}[\/\.\-]\d{2,4}\b", s):
|
| 979 |
-
return True
|
| 980 |
-
if re.search(r"\b\d{4}[\/\.\-]\d{1,2}[\/\.\-]\d{1,2}\b", s):
|
| 981 |
-
return True
|
| 982 |
-
if re.fullmatch(r"\d{4}", s):
|
| 983 |
-
return True
|
| 984 |
-
return False
|
| 985 |
-
|
| 986 |
-
def looks_like_person_name(s: str) -> bool:
|
| 987 |
-
if not s:
|
| 988 |
-
return False
|
| 989 |
-
low = s.lower().strip()
|
| 990 |
-
bad_terms = ["pty ltd", "p/l", "plc", "company", "farming", "farm", "trust", "ltd"]
|
| 991 |
-
if any(bt in low for bt in bad_terms):
|
| 992 |
-
return False
|
| 993 |
-
if len(low) < 3:
|
| 994 |
-
return False
|
| 995 |
-
return bool(re.search(r"[a-zA-Z]", low))
|
| 996 |
-
|
| 997 |
-
def looks_like_position(s: str) -> bool:
|
| 998 |
-
if not s:
|
| 999 |
-
return False
|
| 1000 |
-
low = s.lower()
|
| 1001 |
-
roles = ["manager", "auditor", "owner", "director", "supervisor", "coordinator", "driver", "operator", "representative", "chief"]
|
| 1002 |
-
return any(r in low for r in roles)
|
| 1003 |
-
|
| 1004 |
-
print(f" π― Processing other declaration table (fallback small-table behavior)")
|
| 1005 |
-
|
| 1006 |
-
for row_idx, row in enumerate(table.rows):
|
| 1007 |
-
for cell_idx, cell in enumerate(row.cells):
|
| 1008 |
-
if not has_red_text(cell):
|
| 1009 |
-
continue
|
| 1010 |
-
|
| 1011 |
-
declaration_fields = [
|
| 1012 |
-
"NHVAS Approved Auditor Declaration.Print Name",
|
| 1013 |
-
"Auditor name",
|
| 1014 |
-
"Signature",
|
| 1015 |
-
"Date"
|
| 1016 |
-
]
|
| 1017 |
-
|
| 1018 |
-
replaced_this_cell = False
|
| 1019 |
-
for field in declaration_fields:
|
| 1020 |
-
field_value = find_matching_json_value(field, flat_json)
|
| 1021 |
-
if field_value is None:
|
| 1022 |
-
continue
|
| 1023 |
-
|
| 1024 |
-
replacement_text = get_value_as_string(field_value, field).strip()
|
| 1025 |
-
if not replacement_text:
|
| 1026 |
-
continue
|
| 1027 |
-
|
| 1028 |
-
if is_date_like(replacement_text):
|
| 1029 |
-
red_text = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red(run)).strip()
|
| 1030 |
-
if "date" not in red_text.lower():
|
| 1031 |
-
print(f" β οΈ Skipping date-like replacement for field '{field}' -> '{replacement_text[:30]}...'")
|
| 1032 |
-
continue
|
| 1033 |
-
|
| 1034 |
-
if (looks_like_person_name(replacement_text) or looks_like_position(replacement_text) or "signature" in field.lower() or "date" in field.lower()):
|
| 1035 |
-
cell_replacements = replace_red_text_in_cell(cell, replacement_text)
|
| 1036 |
-
if cell_replacements > 0:
|
| 1037 |
-
replacements_made += cell_replacements
|
| 1038 |
-
replaced_this_cell = True
|
| 1039 |
-
print(f" β
Fixed declaration field: {field} -> '{replacement_text}'")
|
| 1040 |
-
break
|
| 1041 |
-
else:
|
| 1042 |
-
print(f" β οΈ Replacement for field '{field}' does not look like name/role, skipping: '{replacement_text[:30]}...'")
|
| 1043 |
-
continue
|
| 1044 |
-
|
| 1045 |
-
if not replaced_this_cell:
|
| 1046 |
-
red_text = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red(run)).strip().lower()
|
| 1047 |
-
if "signature" in red_text:
|
| 1048 |
-
cell_replacements = replace_red_text_in_cell(cell, "[Signature]")
|
| 1049 |
-
if cell_replacements > 0:
|
| 1050 |
-
replacements_made += cell_replacements
|
| 1051 |
-
print(f" β
Inserted placeholder [Signature]")
|
| 1052 |
-
elif "date" in red_text:
|
| 1053 |
-
date_value = find_matching_json_value("Date", flat_json) or find_matching_json_value("Date of Audit", flat_json) or find_matching_json_value("Audit was conducted on", flat_json)
|
| 1054 |
-
if date_value is not None:
|
| 1055 |
-
date_text = get_value_as_string(date_value)
|
| 1056 |
-
if not is_date_like(date_text):
|
| 1057 |
-
print(f" β οΈ Found date-value but not date-like, skipping: '{date_text}'")
|
| 1058 |
-
else:
|
| 1059 |
-
cell_replacements = replace_red_text_in_cell(cell, date_text)
|
| 1060 |
-
if cell_replacements > 0:
|
| 1061 |
replacements_made += cell_replacements
|
| 1062 |
-
print(f" β
|
| 1063 |
-
|
| 1064 |
-
if replacements_made > 0:
|
| 1065 |
-
try:
|
| 1066 |
-
setattr(table, "_processed_operator_declaration", True)
|
| 1067 |
-
print(" π Marked table as processed by operator declaration fallback")
|
| 1068 |
-
except Exception:
|
| 1069 |
-
pass
|
| 1070 |
-
|
| 1071 |
return replacements_made
|
| 1072 |
|
| 1073 |
def handle_print_accreditation_section(table, flat_json):
|
| 1074 |
replacements_made = 0
|
| 1075 |
-
|
| 1076 |
if getattr(table, "_processed_operator_declaration", False):
|
| 1077 |
print(f" βοΈ Skipping Print Accreditation - this is an Operator Declaration table")
|
| 1078 |
return 0
|
| 1079 |
-
|
| 1080 |
table_context = ""
|
| 1081 |
for row in table.rows:
|
| 1082 |
for cell in row.cells:
|
| 1083 |
table_context += get_clean_text(cell).lower() + " "
|
| 1084 |
-
|
| 1085 |
if "operator declaration" in table_context or ("print name" in table_context and "position title" in table_context):
|
| 1086 |
print(f" βοΈ Skipping Print Accreditation - this is an Operator Declaration table")
|
| 1087 |
return 0
|
| 1088 |
-
|
| 1089 |
print(f" π Processing Print Accreditation section")
|
| 1090 |
-
|
| 1091 |
for row_idx, row in enumerate(table.rows):
|
| 1092 |
for cell_idx, cell in enumerate(row.cells):
|
| 1093 |
if has_red_text(cell):
|
| 1094 |
accreditation_fields = [
|
| 1095 |
"(print accreditation name)",
|
| 1096 |
"Operator name (Legal entity)",
|
| 1097 |
-
"Print accreditation name"
|
| 1098 |
-
"(print accreditation name)"
|
| 1099 |
]
|
| 1100 |
-
|
| 1101 |
for field in accreditation_fields:
|
| 1102 |
-
|
| 1103 |
-
if
|
| 1104 |
-
replacement_text = get_value_as_string(
|
| 1105 |
if replacement_text.strip():
|
| 1106 |
cell_replacements = replace_red_text_in_cell(cell, replacement_text)
|
| 1107 |
replacements_made += cell_replacements
|
| 1108 |
if cell_replacements > 0:
|
| 1109 |
-
print(f" β
Fixed accreditation: {
|
| 1110 |
break
|
| 1111 |
-
|
| 1112 |
return replacements_made
|
| 1113 |
|
| 1114 |
def process_single_column_sections(cell, key_text, flat_json):
|
| 1115 |
replacements_made = 0
|
| 1116 |
-
|
| 1117 |
if has_red_text(cell):
|
| 1118 |
red_text = ""
|
| 1119 |
for paragraph in cell.paragraphs:
|
| 1120 |
for run in paragraph.runs:
|
| 1121 |
if is_red(run):
|
| 1122 |
red_text += run.text
|
| 1123 |
-
|
| 1124 |
if red_text.strip():
|
| 1125 |
-
|
| 1126 |
-
if
|
| 1127 |
-
|
| 1128 |
-
|
| 1129 |
-
|
| 1130 |
-
section_replacement = get_value_as_string(section_value, red_text.strip())
|
| 1131 |
cell_replacements = replace_red_text_in_cell(cell, section_replacement)
|
| 1132 |
replacements_made += cell_replacements
|
| 1133 |
if cell_replacements > 0:
|
| 1134 |
print(f" β
Fixed single column section: '{key_text}'")
|
| 1135 |
-
|
| 1136 |
return replacements_made
|
| 1137 |
|
| 1138 |
# ============================================================================
|
| 1139 |
-
#
|
| 1140 |
# ============================================================================
|
| 1141 |
-
|
| 1142 |
def process_tables(document, flat_json):
|
| 1143 |
-
"""Process all tables in the document with comprehensive fixes"""
|
| 1144 |
replacements_made = 0
|
| 1145 |
-
|
| 1146 |
for table_idx, table in enumerate(document.tables):
|
| 1147 |
print(f"\nπ Processing table {table_idx + 1}:")
|
| 1148 |
-
|
| 1149 |
-
# collect brief context
|
| 1150 |
table_text = ""
|
| 1151 |
for row in table.rows[:3]:
|
| 1152 |
for cell in row.cells:
|
| 1153 |
table_text += get_clean_text(cell).lower() + " "
|
| 1154 |
|
| 1155 |
-
# detect management summary & details column
|
| 1156 |
management_summary_indicators = ["mass management", "maintenance management", "fatigue management"]
|
| 1157 |
has_management = any(indicator in table_text for indicator in management_summary_indicators)
|
| 1158 |
has_details = "details" in table_text
|
|
@@ -1162,12 +952,10 @@ def process_tables(document, flat_json):
|
|
| 1162 |
summary_fixes = fix_management_summary_details_column(table, flat_json)
|
| 1163 |
replacements_made += summary_fixes
|
| 1164 |
|
| 1165 |
-
# Process remaining red text in management summary
|
| 1166 |
summary_replacements = 0
|
| 1167 |
for row_idx, row in enumerate(table.rows):
|
| 1168 |
for cell_idx, cell in enumerate(row.cells):
|
| 1169 |
if has_red_text(cell):
|
| 1170 |
-
# Try direct matching with new schema names first
|
| 1171 |
for mgmt_type in ["Mass Management Summary", "Maintenance Management Summary", "Fatigue Management Summary"]:
|
| 1172 |
if mgmt_type.lower().replace(" summary", "") in table_text:
|
| 1173 |
if mgmt_type in flat_json:
|
|
@@ -1192,7 +980,7 @@ def process_tables(document, flat_json):
|
|
| 1192 |
replacements_made += summary_replacements
|
| 1193 |
continue
|
| 1194 |
|
| 1195 |
-
#
|
| 1196 |
vehicle_indicators = ["registration number", "sub-contractor", "weight verification", "rfs suspension", "registration"]
|
| 1197 |
indicator_count = sum(1 for indicator in vehicle_indicators if indicator in table_text)
|
| 1198 |
if indicator_count >= 2:
|
|
@@ -1201,50 +989,46 @@ def process_tables(document, flat_json):
|
|
| 1201 |
replacements_made += vehicle_replacements
|
| 1202 |
continue
|
| 1203 |
|
| 1204 |
-
#
|
| 1205 |
if "attendance list" in table_text and "names and position titles" in table_text:
|
| 1206 |
print(f" π₯ Detected Attendance List table")
|
| 1207 |
attendance_replacements = handle_attendance_list_table_enhanced(table, flat_json)
|
| 1208 |
replacements_made += attendance_replacements
|
| 1209 |
continue
|
| 1210 |
|
| 1211 |
-
#
|
| 1212 |
print_accreditation_indicators = ["print name", "position title"]
|
| 1213 |
indicator_count = sum(1 for indicator in print_accreditation_indicators if indicator in table_text)
|
| 1214 |
-
|
| 1215 |
if indicator_count >= 2 or ("print name" in table_text and "position title" in table_text):
|
| 1216 |
print(f" π Detected Print Accreditation/Operator Declaration table")
|
| 1217 |
declaration_fixes = fix_operator_declaration_empty_values(table, flat_json)
|
| 1218 |
replacements_made += declaration_fixes
|
| 1219 |
-
|
| 1220 |
if not getattr(table, "_processed_operator_declaration", False):
|
| 1221 |
print_accreditation_replacements = handle_print_accreditation_section(table, flat_json)
|
| 1222 |
replacements_made += print_accreditation_replacements
|
| 1223 |
-
|
| 1224 |
continue
|
| 1225 |
|
| 1226 |
-
#
|
| 1227 |
for row_idx, row in enumerate(table.rows):
|
| 1228 |
if len(row.cells) < 1:
|
| 1229 |
continue
|
| 1230 |
-
|
| 1231 |
key_cell = row.cells[0]
|
| 1232 |
key_text = get_clean_text(key_cell)
|
| 1233 |
-
|
| 1234 |
if not key_text:
|
| 1235 |
continue
|
| 1236 |
-
|
| 1237 |
print(f" π Row {row_idx + 1}: Key = '{key_text}'")
|
| 1238 |
-
|
| 1239 |
-
json_value =
|
| 1240 |
|
| 1241 |
if json_value is not None:
|
| 1242 |
replacement_text = get_value_as_string(json_value, key_text)
|
| 1243 |
|
|
|
|
| 1244 |
if ("australian company number" in key_text.lower() or "company number" in key_text.lower()) and isinstance(json_value, list):
|
| 1245 |
cell_replacements = handle_australian_company_number(row, json_value)
|
| 1246 |
replacements_made += cell_replacements
|
| 1247 |
|
|
|
|
| 1248 |
elif ("attendance list" in key_text.lower() or "nature of" in key_text.lower()) and row_idx + 1 < len(table.rows):
|
| 1249 |
print(f" β
Section header detected, checking next row...")
|
| 1250 |
next_row = table.rows[row_idx + 1]
|
|
@@ -1252,17 +1036,21 @@ def process_tables(document, flat_json):
|
|
| 1252 |
if has_red_text(cell):
|
| 1253 |
print(f" β
Found red text in next row, cell {cell_idx + 1}")
|
| 1254 |
if isinstance(json_value, list):
|
| 1255 |
-
|
| 1256 |
-
|
|
|
|
|
|
|
| 1257 |
replacements_made += cell_replacements
|
| 1258 |
if cell_replacements > 0:
|
| 1259 |
print(f" -> Replaced section content")
|
| 1260 |
|
|
|
|
| 1261 |
elif len(row.cells) == 1 or (len(row.cells) > 1 and not any(has_red_text(row.cells[i]) for i in range(1, len(row.cells)))):
|
| 1262 |
if has_red_text(key_cell):
|
| 1263 |
cell_replacements = process_single_column_sections(key_cell, key_text, flat_json)
|
| 1264 |
replacements_made += cell_replacements
|
| 1265 |
|
|
|
|
| 1266 |
else:
|
| 1267 |
for cell_idx in range(1, len(row.cells)):
|
| 1268 |
value_cell = row.cells[cell_idx]
|
|
@@ -1272,6 +1060,7 @@ def process_tables(document, flat_json):
|
|
| 1272 |
replacements_made += cell_replacements
|
| 1273 |
|
| 1274 |
else:
|
|
|
|
| 1275 |
if len(row.cells) == 1 and has_red_text(key_cell):
|
| 1276 |
red_text = ""
|
| 1277 |
for paragraph in key_cell.paragraphs:
|
|
@@ -1279,56 +1068,55 @@ def process_tables(document, flat_json):
|
|
| 1279 |
if is_red(run):
|
| 1280 |
red_text += run.text
|
| 1281 |
if red_text.strip():
|
| 1282 |
-
|
| 1283 |
-
if
|
| 1284 |
-
section_replacement = get_value_as_string(
|
| 1285 |
cell_replacements = replace_red_text_in_cell(key_cell, section_replacement)
|
| 1286 |
replacements_made += cell_replacements
|
| 1287 |
|
|
|
|
| 1288 |
for cell_idx in range(len(row.cells)):
|
| 1289 |
cell = row.cells[cell_idx]
|
| 1290 |
if has_red_text(cell):
|
| 1291 |
cell_replacements = handle_multiple_red_segments_in_cell(cell, flat_json)
|
| 1292 |
replacements_made += cell_replacements
|
| 1293 |
-
|
| 1294 |
if cell_replacements == 0:
|
| 1295 |
surgical_fix = handle_nature_business_multiline_fix(cell, flat_json)
|
| 1296 |
replacements_made += surgical_fix
|
| 1297 |
-
|
| 1298 |
if cell_replacements == 0:
|
| 1299 |
management_summary_fix = handle_management_summary_fix(cell, flat_json)
|
| 1300 |
replacements_made += management_summary_fix
|
| 1301 |
|
| 1302 |
-
# Final declaration
|
| 1303 |
print(f"\nπ― Final check for Declaration tables...")
|
| 1304 |
for table in document.tables[-3:]:
|
| 1305 |
if len(table.rows) <= 4:
|
| 1306 |
if getattr(table, "_processed_operator_declaration", False):
|
| 1307 |
print(f" βοΈ Skipping - already processed by operator declaration handler")
|
| 1308 |
continue
|
| 1309 |
-
declaration_fix =
|
| 1310 |
replacements_made += declaration_fix
|
| 1311 |
|
| 1312 |
return replacements_made
|
| 1313 |
|
| 1314 |
def process_paragraphs(document, flat_json):
|
| 1315 |
-
"""Process all paragraphs in the document"""
|
| 1316 |
replacements_made = 0
|
| 1317 |
print(f"\nπ Processing paragraphs:")
|
| 1318 |
-
|
| 1319 |
for para_idx, paragraph in enumerate(document.paragraphs):
|
| 1320 |
red_runs = [run for run in paragraph.runs if is_red(run) and run.text.strip()]
|
| 1321 |
if red_runs:
|
| 1322 |
red_text_only = "".join(run.text for run in red_runs).strip()
|
| 1323 |
print(f" π Paragraph {para_idx + 1}: Found red text: '{red_text_only}'")
|
| 1324 |
|
| 1325 |
-
|
|
|
|
| 1326 |
|
| 1327 |
if json_value is None:
|
| 1328 |
if "AUDITOR SIGNATURE" in red_text_only.upper() or "DATE" in red_text_only.upper():
|
| 1329 |
-
|
| 1330 |
elif "OPERATOR SIGNATURE" in red_text_only.upper():
|
| 1331 |
-
|
|
|
|
| 1332 |
|
| 1333 |
if json_value is not None:
|
| 1334 |
replacement_text = get_value_as_string(json_value)
|
|
@@ -1338,21 +1126,16 @@ def process_paragraphs(document, flat_json):
|
|
| 1338 |
for run in red_runs[1:]:
|
| 1339 |
run.text = ''
|
| 1340 |
replacements_made += 1
|
| 1341 |
-
|
| 1342 |
return replacements_made
|
| 1343 |
|
| 1344 |
def process_headings(document, flat_json):
|
| 1345 |
-
"""Process headings and their related content"""
|
| 1346 |
replacements_made = 0
|
| 1347 |
print(f"\nπ Processing headings:")
|
| 1348 |
-
|
| 1349 |
paragraphs = document.paragraphs
|
| 1350 |
-
|
| 1351 |
for para_idx, paragraph in enumerate(paragraphs):
|
| 1352 |
paragraph_text = paragraph.text.strip()
|
| 1353 |
if not paragraph_text:
|
| 1354 |
continue
|
| 1355 |
-
|
| 1356 |
matched_heading = None
|
| 1357 |
for category, patterns in HEADING_PATTERNS.items():
|
| 1358 |
for pattern in patterns:
|
|
@@ -1361,26 +1144,20 @@ def process_headings(document, flat_json):
|
|
| 1361 |
break
|
| 1362 |
if matched_heading:
|
| 1363 |
break
|
| 1364 |
-
|
| 1365 |
if matched_heading:
|
| 1366 |
print(f" π Found heading at paragraph {para_idx + 1}: '{paragraph_text}'")
|
| 1367 |
-
|
| 1368 |
if has_red_text_in_paragraph(paragraph):
|
| 1369 |
print(f" π΄ Found red text in heading itself")
|
| 1370 |
heading_replacements = process_red_text_in_paragraph(paragraph, paragraph_text, flat_json)
|
| 1371 |
replacements_made += heading_replacements
|
| 1372 |
-
|
| 1373 |
for next_para_offset in range(1, 6):
|
| 1374 |
next_para_idx = para_idx + next_para_offset
|
| 1375 |
if next_para_idx >= len(paragraphs):
|
| 1376 |
break
|
| 1377 |
-
|
| 1378 |
next_paragraph = paragraphs[next_para_idx]
|
| 1379 |
next_text = next_paragraph.text.strip()
|
| 1380 |
-
|
| 1381 |
if not next_text:
|
| 1382 |
continue
|
| 1383 |
-
|
| 1384 |
is_another_heading = False
|
| 1385 |
for category, patterns in HEADING_PATTERNS.items():
|
| 1386 |
for pattern in patterns:
|
|
@@ -1389,10 +1166,8 @@ def process_headings(document, flat_json):
|
|
| 1389 |
break
|
| 1390 |
if is_another_heading:
|
| 1391 |
break
|
| 1392 |
-
|
| 1393 |
if is_another_heading:
|
| 1394 |
break
|
| 1395 |
-
|
| 1396 |
if has_red_text_in_paragraph(next_paragraph):
|
| 1397 |
print(f" π΄ Found red text in paragraph {next_para_idx + 1} after heading")
|
| 1398 |
context_replacements = process_red_text_in_paragraph(
|
|
@@ -1401,55 +1176,46 @@ def process_headings(document, flat_json):
|
|
| 1401 |
flat_json
|
| 1402 |
)
|
| 1403 |
replacements_made += context_replacements
|
| 1404 |
-
|
| 1405 |
return replacements_made
|
| 1406 |
|
| 1407 |
def process_red_text_in_paragraph(paragraph, context_text, flat_json):
|
| 1408 |
-
"""Process red text within a paragraph using context"""
|
| 1409 |
replacements_made = 0
|
| 1410 |
-
|
| 1411 |
red_text_segments = []
|
| 1412 |
for run in paragraph.runs:
|
| 1413 |
if is_red(run) and run.text.strip():
|
| 1414 |
red_text_segments.append(run.text.strip())
|
| 1415 |
-
|
| 1416 |
if not red_text_segments:
|
| 1417 |
return 0
|
| 1418 |
-
|
| 1419 |
combined_red_text = " ".join(red_text_segments).strip()
|
| 1420 |
print(f" π Red text found: '{combined_red_text}'")
|
| 1421 |
-
|
| 1422 |
-
json_value = None
|
| 1423 |
-
json_value = find_matching_json_value(combined_red_text, flat_json)
|
| 1424 |
|
| 1425 |
if json_value is None:
|
| 1426 |
if "NHVAS APPROVED AUDITOR" in context_text.upper():
|
| 1427 |
auditor_fields = ["auditor name", "auditor", "nhvas auditor", "approved auditor", "print name"]
|
| 1428 |
for field in auditor_fields:
|
| 1429 |
-
|
| 1430 |
-
if
|
| 1431 |
-
print(f" β
Found auditor match with field: '{
|
|
|
|
| 1432 |
break
|
| 1433 |
-
|
| 1434 |
elif "OPERATOR DECLARATION" in context_text.upper():
|
| 1435 |
operator_fields = ["operator name", "operator", "company name", "organisation name", "print name"]
|
| 1436 |
for field in operator_fields:
|
| 1437 |
-
|
| 1438 |
-
if
|
| 1439 |
-
print(f" β
Found operator match with field: '{
|
|
|
|
| 1440 |
break
|
| 1441 |
|
| 1442 |
if json_value is None:
|
| 1443 |
-
context_queries = [
|
| 1444 |
-
f"{context_text} {combined_red_text}",
|
| 1445 |
-
combined_red_text,
|
| 1446 |
-
context_text
|
| 1447 |
-
]
|
| 1448 |
-
|
| 1449 |
for query in context_queries:
|
| 1450 |
-
|
| 1451 |
-
if
|
| 1452 |
-
print(f" β
Found match with combined query")
|
|
|
|
| 1453 |
break
|
| 1454 |
|
| 1455 |
if json_value is not None:
|
|
@@ -1468,13 +1234,10 @@ def process_red_text_in_paragraph(paragraph, context_text, flat_json):
|
|
| 1468 |
return replacements_made
|
| 1469 |
|
| 1470 |
# ============================================================================
|
| 1471 |
-
#
|
| 1472 |
# ============================================================================
|
| 1473 |
-
|
| 1474 |
def process_hf(json_file, docx_file, output_file):
|
| 1475 |
-
"""Main processing function with comprehensive error handling"""
|
| 1476 |
try:
|
| 1477 |
-
# Load JSON
|
| 1478 |
if hasattr(json_file, "read"):
|
| 1479 |
json_data = json.load(json_file)
|
| 1480 |
else:
|
|
@@ -1488,19 +1251,15 @@ def process_hf(json_file, docx_file, output_file):
|
|
| 1488 |
print(f" - {key}: {value}")
|
| 1489 |
print(f" ... and {len(flat_json) - 10} more keys\n")
|
| 1490 |
|
| 1491 |
-
# Load DOCX
|
| 1492 |
if hasattr(docx_file, "read"):
|
| 1493 |
doc = Document(docx_file)
|
| 1494 |
else:
|
| 1495 |
doc = Document(docx_file)
|
| 1496 |
|
| 1497 |
-
# Process document with all fixes
|
| 1498 |
print("π Starting comprehensive document processing...")
|
| 1499 |
-
|
| 1500 |
table_replacements = process_tables(doc, flat_json)
|
| 1501 |
paragraph_replacements = process_paragraphs(doc, flat_json)
|
| 1502 |
heading_replacements = process_headings(doc, flat_json)
|
| 1503 |
-
|
| 1504 |
total_replacements = table_replacements + paragraph_replacements + heading_replacements
|
| 1505 |
|
| 1506 |
# Save unmatched headers for iterative improvement
|
|
@@ -1513,11 +1272,9 @@ def process_hf(json_file, docx_file, output_file):
|
|
| 1513 |
except Exception as e:
|
| 1514 |
print(f"β οΈ Could not save unmatched headers: {e}")
|
| 1515 |
|
| 1516 |
-
# Save output docx
|
| 1517 |
if hasattr(output_file, "write"):
|
| 1518 |
doc.save(output_file)
|
| 1519 |
else:
|
| 1520 |
-
# If output path is a file path string
|
| 1521 |
doc.save(output_file)
|
| 1522 |
|
| 1523 |
print(f"\nβ
Document saved as: {output_file}")
|
|
@@ -1534,10 +1291,6 @@ def process_hf(json_file, docx_file, output_file):
|
|
| 1534 |
import traceback
|
| 1535 |
traceback.print_exc()
|
| 1536 |
|
| 1537 |
-
# ============================================================================
|
| 1538 |
-
# CLI entrypoint
|
| 1539 |
-
# ============================================================================
|
| 1540 |
-
|
| 1541 |
if __name__ == "__main__":
|
| 1542 |
import sys
|
| 1543 |
if len(sys.argv) != 4:
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
+
pipeline.py β safer matching and operator-declaration protections
|
| 4 |
+
|
| 5 |
+
Key improvements:
|
| 6 |
+
- find_matching_json_key_and_value() returns (key, value) so callers can accept/reject by key.
|
| 7 |
+
- Higher fuzzy thresholds for risky substitutions.
|
| 8 |
+
- Operator Declaration: avoid using attendance lists / unrelated keys for Position Title.
|
| 9 |
+
- Vehicle header mapping: stronger normalized substring/ token matching for long headers.
|
| 10 |
+
- Preserves existing logging and all previous handlers/logic.
|
|
|
|
|
|
|
| 11 |
"""
|
| 12 |
|
| 13 |
import json
|
| 14 |
from docx import Document
|
| 15 |
from docx.shared import RGBColor
|
| 16 |
import re
|
| 17 |
+
from typing import Any, Tuple, Optional
|
|
|
|
| 18 |
|
| 19 |
# ============================================================================
|
| 20 |
+
# Heading patterns for document structure detection (unchanged)
|
| 21 |
# ============================================================================
|
|
|
|
| 22 |
HEADING_PATTERNS = {
|
| 23 |
"main": [
|
| 24 |
r"NHVAS\s+Audit\s+Summary\s+Report",
|
|
|
|
| 43 |
}
|
| 44 |
|
| 45 |
# ============================================================================
|
| 46 |
+
# Utility helpers
|
| 47 |
# ============================================================================
|
| 48 |
_unmatched_headers = {}
|
|
|
|
| 49 |
def record_unmatched_header(header: str):
|
| 50 |
if not header:
|
| 51 |
return
|
| 52 |
_unmatched_headers[header] = _unmatched_headers.get(header, 0) + 1
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
def load_json(filepath):
|
| 55 |
with open(filepath, 'r', encoding='utf-8') as file:
|
| 56 |
return json.load(file)
|
|
|
|
| 80 |
elif len(value) == 1:
|
| 81 |
return str(value[0])
|
| 82 |
else:
|
| 83 |
+
# Keep lists intact for special patterns (e.g., ACN digits) but default to join
|
| 84 |
if "australian company number" in field_name.lower() or "company number" in field_name.lower():
|
| 85 |
return value
|
| 86 |
+
return " ".join(str(v) for v in value)
|
|
|
|
| 87 |
else:
|
| 88 |
return str(value)
|
| 89 |
|
|
|
|
| 107 |
return True
|
| 108 |
return False
|
| 109 |
|
|
|
|
| 110 |
def normalize_header_text(s: str) -> str:
|
| 111 |
if not s:
|
| 112 |
return ""
|
| 113 |
+
s = re.sub(r'\([^)]*\)', ' ', s) # remove parenthetical content
|
|
|
|
|
|
|
| 114 |
s = s.replace("/", " ")
|
|
|
|
| 115 |
s = re.sub(r'[^\w\s\#\%]', ' ', s)
|
| 116 |
s = re.sub(r'\s+', ' ', s).strip().lower()
|
| 117 |
+
# canonical tweaks
|
| 118 |
s = s.replace('registrationno', 'registration number')
|
| 119 |
s = s.replace('registrationnumber', 'registration number')
|
|
|
|
| 120 |
s = s.replace('sub-contractor', 'sub contractor')
|
| 121 |
+
s = s.replace('sub contracted', 'sub contractor')
|
| 122 |
+
return s.strip()
|
|
|
|
|
|
|
| 123 |
|
| 124 |
# ============================================================================
|
| 125 |
+
# JSON matching functions
|
| 126 |
+
# - find_matching_json_value: (keeps behavior used elsewhere)
|
| 127 |
+
# - find_matching_json_key_and_value: returns (key, value) so callers can
|
| 128 |
+
# decide whether to use an entry based on the matched key.
|
| 129 |
# ============================================================================
|
|
|
|
| 130 |
def find_matching_json_value(field_name, flat_json):
|
| 131 |
+
"""Legacy API: return value only (preserves existing callers)."""
|
| 132 |
+
result = find_matching_json_key_and_value(field_name, flat_json)
|
| 133 |
+
return result[1] if result else None
|
| 134 |
+
|
| 135 |
+
def find_matching_json_key_and_value(field_name, flat_json) -> Optional[Tuple[str, Any]]:
|
| 136 |
+
"""
|
| 137 |
+
Return (matched_key, matched_value) or None.
|
| 138 |
+
Safer thresholds: fuzzy matches require >=0.35 by default.
|
| 139 |
+
"""
|
| 140 |
field_name = (field_name or "").strip()
|
| 141 |
if not field_name:
|
| 142 |
return None
|
| 143 |
|
| 144 |
+
# Exact match
|
| 145 |
if field_name in flat_json:
|
| 146 |
print(f" β
Direct match found for key '{field_name}'")
|
| 147 |
+
return field_name, flat_json[field_name]
|
| 148 |
|
| 149 |
+
# Case-insensitive exact
|
| 150 |
for key, value in flat_json.items():
|
| 151 |
if key.lower() == field_name.lower():
|
| 152 |
+
print(f" β
Case-insensitive match found for key '{field_name}' -> '{key}'")
|
| 153 |
+
return key, value
|
| 154 |
|
| 155 |
+
# Special-case 'print name' preference for operator vs auditor (prefer fully-qualified)
|
| 156 |
if field_name.lower().strip() == "print name":
|
| 157 |
operator_keys = [k for k in flat_json.keys() if "operator" in k.lower() and "print name" in k.lower()]
|
| 158 |
auditor_keys = [k for k in flat_json.keys() if "auditor" in k.lower() and ("print name" in k.lower() or "name" in k.lower())]
|
|
|
|
| 159 |
if operator_keys:
|
| 160 |
print(f" β
Operator Print Name match: '{field_name}' -> '{operator_keys[0]}'")
|
| 161 |
+
return operator_keys[0], flat_json[operator_keys[0]]
|
| 162 |
elif auditor_keys:
|
| 163 |
print(f" β
Auditor Name match: '{field_name}' -> '{auditor_keys[0]}'")
|
| 164 |
+
return auditor_keys[0], flat_json[auditor_keys[0]]
|
| 165 |
|
| 166 |
+
# Suffix match for nested keys (e.g., 'section.field')
|
| 167 |
for key, value in flat_json.items():
|
| 168 |
if '.' in key and key.split('.')[-1].lower() == field_name.lower():
|
| 169 |
+
print(f" β
Suffix match found for key '{field_name}' -> '{key}'")
|
| 170 |
+
return key, value
|
| 171 |
|
| 172 |
+
# Clean and exact
|
| 173 |
clean_field = re.sub(r'[^\w\s]', ' ', field_name.lower()).strip()
|
| 174 |
clean_field = re.sub(r'\s+', ' ', clean_field)
|
| 175 |
for key, value in flat_json.items():
|
| 176 |
clean_key = re.sub(r'[^\w\s]', ' ', key.lower()).strip()
|
| 177 |
clean_key = re.sub(r'\s+', ' ', clean_key)
|
| 178 |
if clean_field == clean_key:
|
| 179 |
+
print(f" β
Clean match found for key '{field_name}' -> '{key}'")
|
| 180 |
+
return key, value
|
| 181 |
|
| 182 |
+
# Fuzzy matching with token scoring
|
| 183 |
field_words = set(word.lower() for word in re.findall(r'\b\w+\b', field_name) if len(word) > 2)
|
| 184 |
if not field_words:
|
| 185 |
return None
|
| 186 |
|
|
|
|
|
|
|
| 187 |
best_key = None
|
| 188 |
+
best_value = None
|
| 189 |
+
best_score = 0.0
|
| 190 |
|
| 191 |
for key, value in flat_json.items():
|
| 192 |
key_words = set(word.lower() for word in re.findall(r'\b\w+\b', key) if len(word) > 2)
|
| 193 |
if not key_words:
|
| 194 |
continue
|
| 195 |
|
| 196 |
+
common = field_words.intersection(key_words)
|
| 197 |
+
if not common:
|
| 198 |
+
# allow substring in normalized forms as a weaker fallback
|
| 199 |
+
norm_field = normalize_header_text(field_name)
|
| 200 |
+
norm_key = normalize_header_text(key)
|
| 201 |
+
if norm_field and norm_key and (norm_field in norm_key or norm_key in norm_field):
|
| 202 |
+
# substring score based on length ratio
|
| 203 |
+
substring_score = min(len(norm_field), len(norm_key)) / max(len(norm_field), len(norm_key))
|
| 204 |
+
final_score = 0.4 * substring_score
|
| 205 |
+
else:
|
| 206 |
+
final_score = 0.0
|
| 207 |
+
else:
|
| 208 |
+
similarity = len(common) / len(field_words.union(key_words))
|
| 209 |
+
coverage = len(common) / len(field_words)
|
| 210 |
final_score = (similarity * 0.6) + (coverage * 0.4)
|
| 211 |
|
| 212 |
+
if final_score > best_score:
|
| 213 |
+
best_score = final_score
|
| 214 |
+
best_key = key
|
| 215 |
+
best_value = value
|
| 216 |
|
| 217 |
+
# Accept only reasonable fuzzy matches (threshold 0.35)
|
| 218 |
+
if best_key and best_score >= 0.35:
|
| 219 |
print(f" β
Fuzzy match found for key '{field_name}' with JSON key '{best_key}' (score: {best_score:.2f})")
|
| 220 |
+
return best_key, best_value
|
| 221 |
|
| 222 |
print(f" β No match found for '{field_name}'")
|
| 223 |
return None
|
| 224 |
|
| 225 |
# ============================================================================
|
| 226 |
+
# Red text helpers (unchanged except kept robust)
|
| 227 |
# ============================================================================
|
|
|
|
| 228 |
def extract_red_text_segments(cell):
|
| 229 |
red_segments = []
|
| 230 |
for para_idx, paragraph in enumerate(cell.paragraphs):
|
|
|
|
| 237 |
segment_runs.append((para_idx, run_idx, run))
|
| 238 |
else:
|
| 239 |
if segment_runs:
|
| 240 |
+
red_segments.append({'text': current_segment, 'runs': segment_runs.copy(), 'paragraph_idx': para_idx})
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
current_segment = ""
|
| 242 |
segment_runs = []
|
| 243 |
if segment_runs:
|
| 244 |
+
red_segments.append({'text': current_segment, 'runs': segment_runs.copy(), 'paragraph_idx': para_idx})
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
return red_segments
|
| 246 |
|
| 247 |
def replace_all_red_segments(red_segments, replacement_text):
|
| 248 |
if not red_segments:
|
| 249 |
return 0
|
|
|
|
| 250 |
if '\n' in replacement_text:
|
| 251 |
replacement_lines = replacement_text.split('\n')
|
| 252 |
else:
|
| 253 |
replacement_lines = [replacement_text]
|
|
|
|
| 254 |
replacements_made = 0
|
| 255 |
+
first_segment = red_segments[0]
|
| 256 |
+
if first_segment['runs']:
|
| 257 |
+
first_run = first_segment['runs'][0][2]
|
| 258 |
+
first_run.text = replacement_lines[0]
|
| 259 |
+
first_run.font.color.rgb = RGBColor(0, 0, 0)
|
| 260 |
+
replacements_made = 1
|
| 261 |
+
for _, _, run in first_segment['runs'][1:]:
|
| 262 |
+
run.text = ''
|
|
|
|
|
|
|
|
|
|
| 263 |
for segment in red_segments[1:]:
|
| 264 |
for _, _, run in segment['runs']:
|
| 265 |
run.text = ''
|
|
|
|
| 266 |
if len(replacement_lines) > 1 and red_segments:
|
| 267 |
try:
|
| 268 |
first_run = red_segments[0]['runs'][0][2]
|
| 269 |
paragraph = first_run.element.getparent()
|
| 270 |
from docx.oxml import OxmlElement
|
|
|
|
| 271 |
for line in replacement_lines[1:]:
|
| 272 |
if line.strip():
|
| 273 |
br = OxmlElement('w:br')
|
|
|
|
| 279 |
first_run = red_segments[0]['runs'][0][2]
|
| 280 |
first_run.text = ' '.join(replacement_lines)
|
| 281 |
first_run.font.color.rgb = RGBColor(0, 0, 0)
|
|
|
|
| 282 |
return replacements_made
|
| 283 |
|
| 284 |
def replace_single_segment(segment, replacement_text):
|
|
|
|
| 298 |
return replace_all_red_segments(red_segments, replacement_text)
|
| 299 |
|
| 300 |
# ============================================================================
|
| 301 |
+
# Specialized handlers (vehicle, attendance, management, operator) with fixes
|
| 302 |
# ============================================================================
|
| 303 |
|
| 304 |
def handle_australian_company_number(row, company_numbers):
|
|
|
|
| 314 |
return replacements_made
|
| 315 |
|
| 316 |
def handle_vehicle_registration_table(table, flat_json):
|
| 317 |
+
"""
|
| 318 |
+
Stronger header normalization + substring matching for long headers.
|
| 319 |
+
Keeps existing behavior but reduces 'No mapping found' by using normalized substring matching.
|
| 320 |
+
"""
|
| 321 |
replacements_made = 0
|
| 322 |
|
| 323 |
+
# Build candidate vehicle_section similar to prior logic
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
vehicle_section = None
|
| 325 |
+
# Prefer keys explicitly mentioning 'registration' or 'vehicle'
|
| 326 |
+
candidates = [(k, v) for k, v in flat_json.items() if 'registration' in k.lower() or 'vehicle' in k.lower()]
|
| 327 |
+
if candidates:
|
| 328 |
+
# prefer the one with longest key match (likely most specific)
|
| 329 |
+
candidates.sort(key=lambda kv: -len(kv[0]))
|
| 330 |
+
vehicle_section = candidates[0][1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 331 |
|
| 332 |
# fallback: collect flattened keys that look like vehicle columns
|
| 333 |
if vehicle_section is None:
|
| 334 |
potential_columns = {}
|
| 335 |
for key, value in flat_json.items():
|
| 336 |
lk = key.lower()
|
| 337 |
+
if any(col_name in lk for col_name in ["registration number", "sub-contractor", "weight verification", "rfs suspension", "trip records", "fault recording", "fault repair", "daily checks", "roadworthiness"]):
|
| 338 |
if "." in key:
|
| 339 |
column_name = key.split(".")[-1]
|
| 340 |
else:
|
|
|
|
| 348 |
print(f" β Vehicle registration data not found in JSON")
|
| 349 |
return 0
|
| 350 |
|
| 351 |
+
# Normalize vehicle_section into dict of column_label -> list/value
|
| 352 |
if isinstance(vehicle_section, list):
|
| 353 |
+
# if list of dicts, pivot
|
| 354 |
if vehicle_section and isinstance(vehicle_section[0], dict):
|
| 355 |
flattened = {}
|
| 356 |
for entry in vehicle_section:
|
| 357 |
for k, v in entry.items():
|
| 358 |
flattened.setdefault(k, []).append(v)
|
| 359 |
vehicle_section = flattened
|
| 360 |
+
else:
|
| 361 |
+
# can't interpret, bail
|
| 362 |
+
vehicle_section = {}
|
| 363 |
|
| 364 |
if not isinstance(vehicle_section, dict):
|
|
|
|
| 365 |
try:
|
| 366 |
vehicle_section = dict(vehicle_section)
|
| 367 |
except Exception:
|
| 368 |
+
vehicle_section = {}
|
| 369 |
|
| 370 |
print(f" β
Found vehicle registration data with {len(vehicle_section)} columns")
|
| 371 |
|
| 372 |
+
# Find header row (look for registration + number or reg no)
|
| 373 |
header_row_idx = -1
|
| 374 |
header_row = None
|
| 375 |
for row_idx, row in enumerate(table.rows):
|
| 376 |
row_text = " ".join(get_clean_text(cell).lower() for cell in row.cells)
|
| 377 |
+
if ("registration" in row_text and "number" in row_text) or "reg no" in row_text or "registration no" in row_text:
|
| 378 |
header_row_idx = row_idx
|
| 379 |
header_row = row
|
| 380 |
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 381 |
|
| 382 |
if header_row_idx == -1:
|
| 383 |
print(f" β Could not find header row in vehicle table")
|
|
|
|
| 385 |
|
| 386 |
print(f" β
Found header row at index {header_row_idx}")
|
| 387 |
|
| 388 |
+
# Build master labels from vehicle_section keys
|
|
|
|
|
|
|
| 389 |
master_labels = {}
|
| 390 |
for orig_key in vehicle_section.keys():
|
| 391 |
norm = normalize_header_text(str(orig_key))
|
| 392 |
if norm:
|
| 393 |
+
# if there is collision, prefer longer orig_key (more specific)
|
| 394 |
+
if norm in master_labels:
|
| 395 |
+
if len(orig_key) > len(master_labels[norm]):
|
| 396 |
+
master_labels[norm] = orig_key
|
| 397 |
+
else:
|
| 398 |
+
master_labels[norm] = orig_key
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
|
| 400 |
+
# Map header cells using normalized token overlap + substring fallback
|
| 401 |
+
column_mapping = {}
|
| 402 |
for col_idx, cell in enumerate(header_row.cells):
|
| 403 |
header_text = get_clean_text(cell).strip()
|
| 404 |
if not header_text:
|
| 405 |
continue
|
| 406 |
+
header_key = header_text.strip().lower()
|
| 407 |
+
if header_key in {"no", "no.", "#"}:
|
| 408 |
continue
|
| 409 |
|
| 410 |
norm_header = normalize_header_text(header_text)
|
|
|
|
| 416 |
best_match = master_labels[norm_header]
|
| 417 |
best_score = 1.0
|
| 418 |
else:
|
| 419 |
+
# token overlap
|
| 420 |
header_tokens = set(t for t in norm_header.split() if len(t) > 2)
|
| 421 |
for norm_key, orig_label in master_labels.items():
|
| 422 |
key_tokens = set(t for t in norm_key.split() if len(t) > 2)
|
|
|
|
| 426 |
if common:
|
| 427 |
score = len(common) / max(1, len(header_tokens.union(key_tokens)))
|
| 428 |
else:
|
| 429 |
+
# substring fallback on normalized strings
|
| 430 |
if norm_header in norm_key or norm_key in norm_header:
|
| 431 |
score = min(len(norm_header), len(norm_key)) / max(len(norm_header), len(norm_key))
|
| 432 |
else:
|
|
|
|
| 435 |
best_score = score
|
| 436 |
best_match = orig_label
|
| 437 |
|
| 438 |
+
# additional heuristic: if header contains 'roadworthiness' and any master_labels key contains that token, accept
|
| 439 |
+
if not best_match:
|
| 440 |
+
for norm_key, orig_label in master_labels.items():
|
| 441 |
+
if 'roadworthiness' in norm_header and 'roadworthiness' in norm_key:
|
| 442 |
+
best_match = orig_label
|
| 443 |
+
best_score = 0.65
|
| 444 |
+
break
|
| 445 |
+
|
| 446 |
if best_match and best_score >= 0.30:
|
| 447 |
column_mapping[col_idx] = best_match
|
| 448 |
+
print(f" π Column {col_idx}: '{header_text}' -> '{best_match}' (norm:'{norm_header}' score:{best_score:.2f})")
|
| 449 |
else:
|
| 450 |
+
print(f" β οΈ No mapping found for '{header_text}' (norm:'{norm_header}')")
|
| 451 |
record_unmatched_header(header_text)
|
| 452 |
|
| 453 |
if not column_mapping:
|
| 454 |
print(f" β No column mappings found")
|
| 455 |
return 0
|
| 456 |
|
| 457 |
+
# Determine how many rows of data to populate
|
| 458 |
max_data_rows = 0
|
| 459 |
for json_key, data in vehicle_section.items():
|
| 460 |
if isinstance(data, list):
|
|
|
|
| 462 |
|
| 463 |
print(f" π Need to populate {max_data_rows} data rows")
|
| 464 |
|
| 465 |
+
# Populate or add rows
|
| 466 |
for data_row_index in range(max_data_rows):
|
| 467 |
table_row_idx = header_row_idx + 1 + data_row_index
|
|
|
|
| 468 |
if table_row_idx >= len(table.rows):
|
| 469 |
+
print(f" β οΈ Row {table_row_idx + 1} doesn't exist, adding one")
|
| 470 |
+
table.add_row()
|
|
|
|
|
|
|
| 471 |
|
| 472 |
row = table.rows[table_row_idx]
|
| 473 |
print(f" π Processing data row {table_row_idx + 1} (vehicle {data_row_index + 1})")
|
|
|
|
| 474 |
for col_idx, json_key in column_mapping.items():
|
| 475 |
if col_idx < len(row.cells):
|
| 476 |
cell = row.cells[col_idx]
|
|
|
|
| 477 |
column_data = vehicle_section.get(json_key, [])
|
| 478 |
if isinstance(column_data, list) and data_row_index < len(column_data):
|
| 479 |
replacement_value = str(column_data[data_row_index])
|
|
|
|
| 480 |
cell_text = get_clean_text(cell)
|
| 481 |
if has_red_text(cell) or not cell_text.strip():
|
| 482 |
if not cell_text.strip():
|
| 483 |
cell.text = replacement_value
|
| 484 |
replacements_made += 1
|
| 485 |
+
print(f" -> Added '{replacement_value}' to empty cell (col '{json_key}')")
|
| 486 |
else:
|
| 487 |
cell_replacements = replace_red_text_in_cell(cell, replacement_value)
|
| 488 |
replacements_made += cell_replacements
|
| 489 |
if cell_replacements > 0:
|
| 490 |
+
print(f" -> Replaced red text with '{replacement_value}' (col '{json_key}')")
|
| 491 |
|
| 492 |
return replacements_made
|
| 493 |
|
| 494 |
def handle_attendance_list_table_enhanced(table, flat_json):
|
| 495 |
+
"""Same as before β preserved behavior."""
|
| 496 |
replacements_made = 0
|
| 497 |
+
attendance_patterns = ["attendance list", "names and position titles", "attendees"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 498 |
found_attendance_row = None
|
| 499 |
for row_idx, row in enumerate(table.rows[:3]):
|
| 500 |
for cell_idx, cell in enumerate(row.cells):
|
|
|
|
| 505 |
break
|
| 506 |
if found_attendance_row is not None:
|
| 507 |
break
|
|
|
|
| 508 |
if found_attendance_row is None:
|
| 509 |
return 0
|
| 510 |
|
|
|
|
| 515 |
"attendance list",
|
| 516 |
"attendees"
|
| 517 |
]
|
|
|
|
| 518 |
print(f" π Searching for attendance data in JSON...")
|
|
|
|
| 519 |
for search_key in attendance_search_keys:
|
| 520 |
+
kv = find_matching_json_key_and_value(search_key, flat_json)
|
| 521 |
+
if kv:
|
| 522 |
+
attendance_value = kv[1]
|
| 523 |
+
print(f" β
Found attendance data with key: '{kv[0]}'")
|
| 524 |
print(f" π Raw value: {attendance_value}")
|
| 525 |
break
|
|
|
|
| 526 |
if attendance_value is None:
|
| 527 |
print(f" β No attendance data found in JSON")
|
| 528 |
return 0
|
| 529 |
|
| 530 |
+
# Find red text candidate cell
|
| 531 |
target_cell = None
|
| 532 |
print(f" π Scanning ALL cells in attendance table for red text...")
|
|
|
|
| 533 |
for row_idx, row in enumerate(table.rows):
|
| 534 |
for cell_idx, cell in enumerate(row.cells):
|
| 535 |
if has_red_text(cell):
|
|
|
|
|
|
|
| 536 |
red_text = ""
|
| 537 |
for paragraph in cell.paragraphs:
|
| 538 |
for run in paragraph.runs:
|
| 539 |
if is_red(run):
|
| 540 |
red_text += run.text
|
| 541 |
+
if red_text.strip():
|
| 542 |
+
print(f" π― Found red text in row {row_idx + 1}, cell {cell_idx + 1}")
|
| 543 |
+
print(f" π Red text content: '{red_text[:60]}...'")
|
| 544 |
+
red_lower = red_text.lower()
|
| 545 |
+
if any(ind in red_lower for ind in ['manager', 'director', 'auditor', 'β', '-']):
|
| 546 |
+
target_cell = cell
|
| 547 |
+
print(f" β
This looks like attendance data - using this cell")
|
| 548 |
+
break
|
| 549 |
+
if target_cell:
|
| 550 |
break
|
| 551 |
|
| 552 |
if target_cell is None:
|
|
|
|
| 555 |
|
| 556 |
if has_red_text(target_cell):
|
| 557 |
print(f" π§ Replacing red text with properly formatted attendance list...")
|
|
|
|
| 558 |
if isinstance(attendance_value, list):
|
| 559 |
attendance_list = [str(item).strip() for item in attendance_value if str(item).strip()]
|
| 560 |
else:
|
| 561 |
attendance_list = [str(attendance_value).strip()]
|
|
|
|
| 562 |
print(f" π Attendance items to add:")
|
| 563 |
for i, item in enumerate(attendance_list):
|
| 564 |
print(f" {i+1}. {item}")
|
|
|
|
| 565 |
replacement_text = "\n".join(attendance_list)
|
| 566 |
cell_replacements = replace_red_text_in_cell(target_cell, replacement_text)
|
| 567 |
replacements_made += cell_replacements
|
|
|
|
| 568 |
print(f" β
Added {len(attendance_list)} attendance items")
|
| 569 |
print(f" π Replacements made: {cell_replacements}")
|
|
|
|
| 570 |
return replacements_made
|
| 571 |
|
| 572 |
def fix_management_summary_details_column(table, flat_json):
|
| 573 |
+
"""Preserve behavior but prefer scoped mgmt dicts."""
|
| 574 |
replacements_made = 0
|
|
|
|
| 575 |
print(f" π― FIX: Management Summary DETAILS column processing")
|
|
|
|
|
|
|
| 576 |
table_text = ""
|
| 577 |
for row in table.rows[:3]:
|
| 578 |
for cell in row.cells:
|
| 579 |
table_text += get_clean_text(cell).lower() + " "
|
|
|
|
|
|
|
| 580 |
mgmt_types = []
|
| 581 |
if "mass management" in table_text or "mass" in table_text:
|
| 582 |
mgmt_types.append("Mass Management Summary")
|
| 583 |
if "maintenance management" in table_text or "maintenance" in table_text:
|
| 584 |
mgmt_types.append("Maintenance Management Summary")
|
| 585 |
+
if "fatigue management" in table_text or "fatigue" in table_text:
|
| 586 |
mgmt_types.append("Fatigue Management Summary")
|
|
|
|
| 587 |
if not mgmt_types:
|
|
|
|
| 588 |
if any("std 5" in get_clean_text(c).lower() for r in table.rows for c in r.cells):
|
| 589 |
mgmt_types.append("Mass Management Summary")
|
|
|
|
| 590 |
if not mgmt_types:
|
| 591 |
return 0
|
|
|
|
| 592 |
for mgmt_type in mgmt_types:
|
| 593 |
print(f" β
Confirmed {mgmt_type} table processing")
|
|
|
|
| 594 |
mgmt_data = flat_json.get(mgmt_type)
|
| 595 |
if not isinstance(mgmt_data, dict):
|
|
|
|
| 596 |
for key in flat_json.keys():
|
| 597 |
if mgmt_type.split()[0].lower() in key.lower() and "summary" in key.lower():
|
| 598 |
mgmt_data = flat_json.get(key)
|
|
|
|
| 600 |
if not isinstance(mgmt_data, dict):
|
| 601 |
print(f" β οΈ No JSON management dict found for {mgmt_type}, skipping this type")
|
| 602 |
continue
|
|
|
|
|
|
|
| 603 |
for row_idx, row in enumerate(table.rows):
|
| 604 |
if len(row.cells) >= 2:
|
| 605 |
standard_cell = row.cells[0]
|
| 606 |
details_cell = row.cells[1]
|
| 607 |
standard_text = get_clean_text(standard_cell).strip().lower()
|
|
|
|
|
|
|
| 608 |
if "std 5" in standard_text or "verification" in standard_text:
|
| 609 |
if has_red_text(details_cell):
|
|
|
|
|
|
|
| 610 |
std_val = None
|
|
|
|
| 611 |
for candidate in ("Std 5. Verification", "Std 5 Verification", "Std 5", "Verification"):
|
| 612 |
std_val = mgmt_data.get(candidate)
|
| 613 |
if std_val is not None:
|
| 614 |
break
|
|
|
|
| 615 |
if std_val is None:
|
| 616 |
for k, v in mgmt_data.items():
|
| 617 |
if 'std 5' in k.lower() or 'verification' in k.lower():
|
|
|
|
| 623 |
replacements_made += cell_replacements
|
| 624 |
if cell_replacements:
|
| 625 |
print(f" β
Replaced Std 5. Verification details for {mgmt_type}")
|
|
|
|
|
|
|
| 626 |
if "std 6" in standard_text or "internal review" in standard_text:
|
| 627 |
if has_red_text(details_cell):
|
|
|
|
| 628 |
std_val = None
|
| 629 |
for candidate in ("Std 6. Internal Review", "Std 6 Internal Review", "Std 6", "Internal Review"):
|
| 630 |
std_val = mgmt_data.get(candidate)
|
|
|
|
| 641 |
replacements_made += cell_replacements
|
| 642 |
if cell_replacements:
|
| 643 |
print(f" β
Replaced Std 6. Internal Review details for {mgmt_type}")
|
|
|
|
| 644 |
return replacements_made
|
| 645 |
|
| 646 |
+
# ============================================================================
|
| 647 |
+
# Canonical operator declaration fixer β SAFER
|
| 648 |
+
# ============================================================================
|
| 649 |
def fix_operator_declaration_empty_values(table, flat_json):
|
| 650 |
replacements_made = 0
|
|
|
|
| 651 |
print(f" π― FIX: Operator Declaration empty values processing")
|
|
|
|
| 652 |
table_context = ""
|
| 653 |
for row in table.rows:
|
| 654 |
for cell in row.cells:
|
| 655 |
table_context += get_clean_text(cell).lower() + " "
|
|
|
|
| 656 |
if not ("print name" in table_context and "position title" in table_context):
|
| 657 |
return 0
|
|
|
|
| 658 |
print(f" β
Confirmed Operator Declaration table")
|
| 659 |
|
| 660 |
def parse_name_and_position(value):
|
|
|
|
| 665 |
return None, None
|
| 666 |
if len(value) == 1:
|
| 667 |
return str(value[0]).strip(), None
|
| 668 |
+
# common [name, position] pattern
|
| 669 |
first = str(value[0]).strip()
|
| 670 |
second = str(value[1]).strip()
|
| 671 |
if first and second:
|
| 672 |
return first, second
|
| 673 |
value = " ".join(str(v).strip() for v in value if str(v).strip())
|
|
|
|
| 674 |
s = str(value).strip()
|
| 675 |
if not s:
|
| 676 |
return None, None
|
|
|
|
| 677 |
parts = re.split(r'\s+[-ββ]\s+|\s*,\s*|\s*\|\s*', s)
|
| 678 |
if len(parts) >= 2:
|
| 679 |
left = parts[0].strip()
|
|
|
|
| 685 |
if any(ind in left.lower() for ind in role_indicators) and not any(ind in right.lower() for ind in role_indicators):
|
| 686 |
return right, left
|
| 687 |
return left, right
|
|
|
|
| 688 |
tokens = s.split()
|
| 689 |
if len(tokens) >= 2:
|
| 690 |
last = tokens[-1]
|
|
|
|
| 692 |
'coordinator', 'driver', 'operator', 'representative', 'chief']
|
| 693 |
if any(ind == last.lower() for ind in role_indicators):
|
| 694 |
return " ".join(tokens[:-1]), last
|
|
|
|
| 695 |
return s, None
|
| 696 |
|
| 697 |
for row_idx, row in enumerate(table.rows):
|
| 698 |
if len(row.cells) >= 2:
|
| 699 |
cell1_text = get_clean_text(row.cells[0]).strip().lower()
|
| 700 |
cell2_text = get_clean_text(row.cells[1]).strip().lower()
|
| 701 |
+
# header detection
|
| 702 |
if "print name" in cell1_text and "position" in cell2_text:
|
| 703 |
print(f" π Found header row at {row_idx + 1}")
|
|
|
|
| 704 |
if row_idx + 1 < len(table.rows):
|
| 705 |
data_row = table.rows[row_idx + 1]
|
| 706 |
if len(data_row.cells) >= 2:
|
| 707 |
name_cell = data_row.cells[0]
|
| 708 |
position_cell = data_row.cells[1]
|
|
|
|
| 709 |
name_text = get_clean_text(name_cell).strip()
|
| 710 |
position_text = get_clean_text(position_cell).strip()
|
| 711 |
print(f" π Current values: Name='{name_text}', Position='{position_text}'")
|
| 712 |
|
| 713 |
+
# Prefer exact qualified keys first (use key-aware lookup)
|
| 714 |
+
name_kv = find_matching_json_key_and_value("Operator Declaration.Print Name", flat_json) or find_matching_json_key_and_value("Print Name", flat_json)
|
| 715 |
+
position_kv = find_matching_json_key_and_value("Operator Declaration.Position Title", flat_json) or find_matching_json_key_and_value("Position Title", flat_json)
|
| 716 |
+
|
| 717 |
+
name_value = name_kv[1] if name_kv else None
|
| 718 |
+
name_key = name_kv[0] if name_kv else None
|
| 719 |
|
| 720 |
+
position_value = position_kv[1] if position_kv else None
|
| 721 |
+
position_key = position_kv[0] if position_kv else None
|
|
|
|
| 722 |
|
| 723 |
+
# parse combined cases
|
| 724 |
parsed_name_from_nameval, parsed_pos_from_nameval = parse_name_and_position(name_value) if name_value is not None else (None, None)
|
| 725 |
parsed_name_from_posval, parsed_pos_from_posval = parse_name_and_position(position_value) if position_value is not None else (None, None)
|
| 726 |
|
|
|
|
| 732 |
elif name_value is not None:
|
| 733 |
final_name = get_value_as_string(name_value)
|
| 734 |
|
| 735 |
+
# Position acceptance policy:
|
| 736 |
+
# - Accept position_value ONLY if matched key indicates position/title OR parsed value looks like a role
|
| 737 |
+
def looks_like_role(s: str) -> bool:
|
| 738 |
+
if not s:
|
| 739 |
+
return False
|
| 740 |
+
s = s.lower()
|
| 741 |
+
roles = ['manager', 'auditor', 'owner', 'director', 'supervisor', 'coordinator', 'driver', 'operator', 'representative', 'chief']
|
| 742 |
+
# short role descriptions or containing role token
|
| 743 |
+
if any(r in s for r in roles):
|
| 744 |
+
return True
|
| 745 |
+
# single/short token likely role (<=4 tokens)
|
| 746 |
+
if len(s.split()) <= 4 and any(c.isalpha() for c in s):
|
| 747 |
+
return True
|
| 748 |
+
return False
|
| 749 |
+
|
| 750 |
+
# Only use position_value if the matched key strongly indicates position/title
|
| 751 |
+
use_position = False
|
| 752 |
+
if position_kv:
|
| 753 |
+
k_lower = (position_key or "").lower()
|
| 754 |
+
if ("position" in k_lower or "title" in k_lower or "role" in k_lower):
|
| 755 |
+
use_position = True
|
| 756 |
+
# Avoid using attendance keys or attendance text as position source
|
| 757 |
+
if position_kv and ("attendance" in position_key.lower() or "attendance list" in position_key.lower() or "attendees" in position_key.lower()):
|
| 758 |
+
use_position = False
|
| 759 |
+
|
| 760 |
+
if use_position:
|
| 761 |
+
# choose parsed pos if available
|
| 762 |
+
if parsed_pos_from_posval:
|
| 763 |
+
final_pos = parsed_pos_from_posval
|
| 764 |
+
else:
|
| 765 |
+
final_pos = get_value_as_string(position_value) if position_value is not None else None
|
| 766 |
+
else:
|
| 767 |
+
# allow parsed position gleaned from name_value (if it looks like a role)
|
| 768 |
+
if parsed_pos_from_nameval and looks_like_role(parsed_pos_from_nameval):
|
| 769 |
+
final_pos = parsed_pos_from_nameval
|
| 770 |
|
| 771 |
+
# final normalization
|
| 772 |
if isinstance(final_name, list):
|
| 773 |
final_name = " ".join(str(x) for x in final_name).strip()
|
| 774 |
if isinstance(final_pos, list):
|
|
|
|
| 785 |
low = name_str.lower()
|
| 786 |
if any(bp in low for bp in bad_phrases):
|
| 787 |
return False
|
| 788 |
+
return len(name_str) > 1 and any(c.isalpha() for c in name_str)
|
| 789 |
|
| 790 |
+
# Write name if empty or red
|
| 791 |
if (not name_text or has_red_text(name_cell)) and final_name and looks_like_person(final_name):
|
| 792 |
if has_red_text(name_cell):
|
| 793 |
replace_red_text_in_cell(name_cell, final_name)
|
|
|
|
| 796 |
replacements_made += 1
|
| 797 |
print(f" β
Updated Print Name -> '{final_name}'")
|
| 798 |
|
| 799 |
+
# Write position if empty or red and final_pos appears role-like
|
| 800 |
+
if (not position_text or has_red_text(position_cell)) and final_pos and looks_like_role(final_pos):
|
| 801 |
if has_red_text(position_cell):
|
| 802 |
replace_red_text_in_cell(position_cell, final_pos)
|
| 803 |
else:
|
|
|
|
| 824 |
for i, segment in enumerate(red_segments):
|
| 825 |
segment_text = segment['text'].strip()
|
| 826 |
if segment_text:
|
| 827 |
+
kv = find_matching_json_key_and_value(segment_text, flat_json)
|
| 828 |
+
if kv:
|
| 829 |
+
replacement_text = get_value_as_string(kv[1], segment_text)
|
| 830 |
if replace_single_segment(segment, replacement_text):
|
| 831 |
replacements_made += 1
|
| 832 |
print(f" β
Replaced segment {i+1}: '{segment_text}' -> '{replacement_text}'")
|
|
|
|
| 844 |
return 0
|
| 845 |
nature_indicators = ["transport", "logistics", "freight", "delivery", "trucking", "haulage"]
|
| 846 |
if any(indicator in red_text.lower() for indicator in nature_indicators):
|
| 847 |
+
kv = find_matching_json_key_and_value("Nature of Business", flat_json) or find_matching_json_key_and_value("Nature of the Operators Business (Summary)", flat_json)
|
| 848 |
+
if kv:
|
| 849 |
+
replacement_text = get_value_as_string(kv[1], "Nature of Business")
|
| 850 |
cell_replacements = replace_red_text_in_cell(cell, replacement_text)
|
| 851 |
replacements_made += cell_replacements
|
| 852 |
print(f" β
Fixed Nature of Business multiline content")
|
|
|
|
| 864 |
return 0
|
| 865 |
management_types = ["Mass Management Summary", "Maintenance Management Summary", "Fatigue Management Summary"]
|
| 866 |
for mgmt_type in management_types:
|
| 867 |
+
if mgmt_type in flat_json and isinstance(flat_json[mgmt_type], dict):
|
| 868 |
mgmt_data = flat_json[mgmt_type]
|
| 869 |
+
for std_key, std_value in mgmt_data.items():
|
| 870 |
+
if isinstance(std_value, list) and std_value:
|
| 871 |
+
if len(red_text) > 10:
|
| 872 |
+
for item in std_value:
|
| 873 |
+
if red_text.lower() in str(item).lower() or str(item).lower() in red_text.lower():
|
| 874 |
+
replacement_text = "\n".join(str(i) for i in std_value)
|
| 875 |
+
cell_replacements = replace_red_text_in_cell(cell, replacement_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 876 |
replacements_made += cell_replacements
|
| 877 |
+
print(f" β
Fixed {mgmt_type} - {std_key}")
|
| 878 |
+
return replacements_made
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 879 |
return replacements_made
|
| 880 |
|
| 881 |
def handle_print_accreditation_section(table, flat_json):
|
| 882 |
replacements_made = 0
|
|
|
|
| 883 |
if getattr(table, "_processed_operator_declaration", False):
|
| 884 |
print(f" βοΈ Skipping Print Accreditation - this is an Operator Declaration table")
|
| 885 |
return 0
|
|
|
|
| 886 |
table_context = ""
|
| 887 |
for row in table.rows:
|
| 888 |
for cell in row.cells:
|
| 889 |
table_context += get_clean_text(cell).lower() + " "
|
|
|
|
| 890 |
if "operator declaration" in table_context or ("print name" in table_context and "position title" in table_context):
|
| 891 |
print(f" βοΈ Skipping Print Accreditation - this is an Operator Declaration table")
|
| 892 |
return 0
|
|
|
|
| 893 |
print(f" π Processing Print Accreditation section")
|
|
|
|
| 894 |
for row_idx, row in enumerate(table.rows):
|
| 895 |
for cell_idx, cell in enumerate(row.cells):
|
| 896 |
if has_red_text(cell):
|
| 897 |
accreditation_fields = [
|
| 898 |
"(print accreditation name)",
|
| 899 |
"Operator name (Legal entity)",
|
| 900 |
+
"Print accreditation name"
|
|
|
|
| 901 |
]
|
|
|
|
| 902 |
for field in accreditation_fields:
|
| 903 |
+
kv = find_matching_json_key_and_value(field, flat_json)
|
| 904 |
+
if kv:
|
| 905 |
+
replacement_text = get_value_as_string(kv[1], field)
|
| 906 |
if replacement_text.strip():
|
| 907 |
cell_replacements = replace_red_text_in_cell(cell, replacement_text)
|
| 908 |
replacements_made += cell_replacements
|
| 909 |
if cell_replacements > 0:
|
| 910 |
+
print(f" β
Fixed accreditation: {kv[0]}")
|
| 911 |
break
|
|
|
|
| 912 |
return replacements_made
|
| 913 |
|
| 914 |
def process_single_column_sections(cell, key_text, flat_json):
|
| 915 |
replacements_made = 0
|
|
|
|
| 916 |
if has_red_text(cell):
|
| 917 |
red_text = ""
|
| 918 |
for paragraph in cell.paragraphs:
|
| 919 |
for run in paragraph.runs:
|
| 920 |
if is_red(run):
|
| 921 |
red_text += run.text
|
|
|
|
| 922 |
if red_text.strip():
|
| 923 |
+
kv = find_matching_json_key_and_value(red_text.strip(), flat_json)
|
| 924 |
+
if not kv:
|
| 925 |
+
kv = find_matching_json_key_and_value(key_text, flat_json)
|
| 926 |
+
if kv:
|
| 927 |
+
section_replacement = get_value_as_string(kv[1], red_text.strip())
|
|
|
|
| 928 |
cell_replacements = replace_red_text_in_cell(cell, section_replacement)
|
| 929 |
replacements_made += cell_replacements
|
| 930 |
if cell_replacements > 0:
|
| 931 |
print(f" β
Fixed single column section: '{key_text}'")
|
|
|
|
| 932 |
return replacements_made
|
| 933 |
|
| 934 |
# ============================================================================
|
| 935 |
+
# Main table/paragraph/heading processing (preserve logic + use new helpers)
|
| 936 |
# ============================================================================
|
|
|
|
| 937 |
def process_tables(document, flat_json):
|
|
|
|
| 938 |
replacements_made = 0
|
|
|
|
| 939 |
for table_idx, table in enumerate(document.tables):
|
| 940 |
print(f"\nπ Processing table {table_idx + 1}:")
|
|
|
|
|
|
|
| 941 |
table_text = ""
|
| 942 |
for row in table.rows[:3]:
|
| 943 |
for cell in row.cells:
|
| 944 |
table_text += get_clean_text(cell).lower() + " "
|
| 945 |
|
|
|
|
| 946 |
management_summary_indicators = ["mass management", "maintenance management", "fatigue management"]
|
| 947 |
has_management = any(indicator in table_text for indicator in management_summary_indicators)
|
| 948 |
has_details = "details" in table_text
|
|
|
|
| 952 |
summary_fixes = fix_management_summary_details_column(table, flat_json)
|
| 953 |
replacements_made += summary_fixes
|
| 954 |
|
|
|
|
| 955 |
summary_replacements = 0
|
| 956 |
for row_idx, row in enumerate(table.rows):
|
| 957 |
for cell_idx, cell in enumerate(row.cells):
|
| 958 |
if has_red_text(cell):
|
|
|
|
| 959 |
for mgmt_type in ["Mass Management Summary", "Maintenance Management Summary", "Fatigue Management Summary"]:
|
| 960 |
if mgmt_type.lower().replace(" summary", "") in table_text:
|
| 961 |
if mgmt_type in flat_json:
|
|
|
|
| 980 |
replacements_made += summary_replacements
|
| 981 |
continue
|
| 982 |
|
| 983 |
+
# Vehicle tables detection
|
| 984 |
vehicle_indicators = ["registration number", "sub-contractor", "weight verification", "rfs suspension", "registration"]
|
| 985 |
indicator_count = sum(1 for indicator in vehicle_indicators if indicator in table_text)
|
| 986 |
if indicator_count >= 2:
|
|
|
|
| 989 |
replacements_made += vehicle_replacements
|
| 990 |
continue
|
| 991 |
|
| 992 |
+
# Attendance
|
| 993 |
if "attendance list" in table_text and "names and position titles" in table_text:
|
| 994 |
print(f" π₯ Detected Attendance List table")
|
| 995 |
attendance_replacements = handle_attendance_list_table_enhanced(table, flat_json)
|
| 996 |
replacements_made += attendance_replacements
|
| 997 |
continue
|
| 998 |
|
| 999 |
+
# Print Accreditation / Operator Declaration
|
| 1000 |
print_accreditation_indicators = ["print name", "position title"]
|
| 1001 |
indicator_count = sum(1 for indicator in print_accreditation_indicators if indicator in table_text)
|
|
|
|
| 1002 |
if indicator_count >= 2 or ("print name" in table_text and "position title" in table_text):
|
| 1003 |
print(f" π Detected Print Accreditation/Operator Declaration table")
|
| 1004 |
declaration_fixes = fix_operator_declaration_empty_values(table, flat_json)
|
| 1005 |
replacements_made += declaration_fixes
|
|
|
|
| 1006 |
if not getattr(table, "_processed_operator_declaration", False):
|
| 1007 |
print_accreditation_replacements = handle_print_accreditation_section(table, flat_json)
|
| 1008 |
replacements_made += print_accreditation_replacements
|
|
|
|
| 1009 |
continue
|
| 1010 |
|
| 1011 |
+
# Regular table rows handling (preserved)
|
| 1012 |
for row_idx, row in enumerate(table.rows):
|
| 1013 |
if len(row.cells) < 1:
|
| 1014 |
continue
|
|
|
|
| 1015 |
key_cell = row.cells[0]
|
| 1016 |
key_text = get_clean_text(key_cell)
|
|
|
|
| 1017 |
if not key_text:
|
| 1018 |
continue
|
|
|
|
| 1019 |
print(f" π Row {row_idx + 1}: Key = '{key_text}'")
|
| 1020 |
+
kv = find_matching_json_key_and_value(key_text, flat_json)
|
| 1021 |
+
json_value = kv[1] if kv else None
|
| 1022 |
|
| 1023 |
if json_value is not None:
|
| 1024 |
replacement_text = get_value_as_string(json_value, key_text)
|
| 1025 |
|
| 1026 |
+
# ACN handling
|
| 1027 |
if ("australian company number" in key_text.lower() or "company number" in key_text.lower()) and isinstance(json_value, list):
|
| 1028 |
cell_replacements = handle_australian_company_number(row, json_value)
|
| 1029 |
replacements_made += cell_replacements
|
| 1030 |
|
| 1031 |
+
# section headers
|
| 1032 |
elif ("attendance list" in key_text.lower() or "nature of" in key_text.lower()) and row_idx + 1 < len(table.rows):
|
| 1033 |
print(f" β
Section header detected, checking next row...")
|
| 1034 |
next_row = table.rows[row_idx + 1]
|
|
|
|
| 1036 |
if has_red_text(cell):
|
| 1037 |
print(f" β
Found red text in next row, cell {cell_idx + 1}")
|
| 1038 |
if isinstance(json_value, list):
|
| 1039 |
+
section_text = "\n".join(str(item) for item in json_value)
|
| 1040 |
+
else:
|
| 1041 |
+
section_text = replacement_text
|
| 1042 |
+
cell_replacements = replace_red_text_in_cell(cell, section_text)
|
| 1043 |
replacements_made += cell_replacements
|
| 1044 |
if cell_replacements > 0:
|
| 1045 |
print(f" -> Replaced section content")
|
| 1046 |
|
| 1047 |
+
# single column
|
| 1048 |
elif len(row.cells) == 1 or (len(row.cells) > 1 and not any(has_red_text(row.cells[i]) for i in range(1, len(row.cells)))):
|
| 1049 |
if has_red_text(key_cell):
|
| 1050 |
cell_replacements = process_single_column_sections(key_cell, key_text, flat_json)
|
| 1051 |
replacements_made += cell_replacements
|
| 1052 |
|
| 1053 |
+
# key-value pairs
|
| 1054 |
else:
|
| 1055 |
for cell_idx in range(1, len(row.cells)):
|
| 1056 |
value_cell = row.cells[cell_idx]
|
|
|
|
| 1060 |
replacements_made += cell_replacements
|
| 1061 |
|
| 1062 |
else:
|
| 1063 |
+
# fallback single cell red-text key
|
| 1064 |
if len(row.cells) == 1 and has_red_text(key_cell):
|
| 1065 |
red_text = ""
|
| 1066 |
for paragraph in key_cell.paragraphs:
|
|
|
|
| 1068 |
if is_red(run):
|
| 1069 |
red_text += run.text
|
| 1070 |
if red_text.strip():
|
| 1071 |
+
kv2 = find_matching_json_key_and_value(red_text.strip(), flat_json)
|
| 1072 |
+
if kv2:
|
| 1073 |
+
section_replacement = get_value_as_string(kv2[1], red_text.strip())
|
| 1074 |
cell_replacements = replace_red_text_in_cell(key_cell, section_replacement)
|
| 1075 |
replacements_made += cell_replacements
|
| 1076 |
|
| 1077 |
+
# attempt multiple red-segments or surgical fixes
|
| 1078 |
for cell_idx in range(len(row.cells)):
|
| 1079 |
cell = row.cells[cell_idx]
|
| 1080 |
if has_red_text(cell):
|
| 1081 |
cell_replacements = handle_multiple_red_segments_in_cell(cell, flat_json)
|
| 1082 |
replacements_made += cell_replacements
|
|
|
|
| 1083 |
if cell_replacements == 0:
|
| 1084 |
surgical_fix = handle_nature_business_multiline_fix(cell, flat_json)
|
| 1085 |
replacements_made += surgical_fix
|
|
|
|
| 1086 |
if cell_replacements == 0:
|
| 1087 |
management_summary_fix = handle_management_summary_fix(cell, flat_json)
|
| 1088 |
replacements_made += management_summary_fix
|
| 1089 |
|
| 1090 |
+
# Final operator/auditor declaration check on last few tables
|
| 1091 |
print(f"\nπ― Final check for Declaration tables...")
|
| 1092 |
for table in document.tables[-3:]:
|
| 1093 |
if len(table.rows) <= 4:
|
| 1094 |
if getattr(table, "_processed_operator_declaration", False):
|
| 1095 |
print(f" βοΈ Skipping - already processed by operator declaration handler")
|
| 1096 |
continue
|
| 1097 |
+
declaration_fix = fix_operator_declaration_empty_values(table, flat_json)
|
| 1098 |
replacements_made += declaration_fix
|
| 1099 |
|
| 1100 |
return replacements_made
|
| 1101 |
|
| 1102 |
def process_paragraphs(document, flat_json):
|
|
|
|
| 1103 |
replacements_made = 0
|
| 1104 |
print(f"\nπ Processing paragraphs:")
|
|
|
|
| 1105 |
for para_idx, paragraph in enumerate(document.paragraphs):
|
| 1106 |
red_runs = [run for run in paragraph.runs if is_red(run) and run.text.strip()]
|
| 1107 |
if red_runs:
|
| 1108 |
red_text_only = "".join(run.text for run in red_runs).strip()
|
| 1109 |
print(f" π Paragraph {para_idx + 1}: Found red text: '{red_text_only}'")
|
| 1110 |
|
| 1111 |
+
kv = find_matching_json_key_and_value(red_text_only, flat_json)
|
| 1112 |
+
json_value = kv[1] if kv else None
|
| 1113 |
|
| 1114 |
if json_value is None:
|
| 1115 |
if "AUDITOR SIGNATURE" in red_text_only.upper() or "DATE" in red_text_only.upper():
|
| 1116 |
+
kv = find_matching_json_key_and_value("auditor signature", flat_json)
|
| 1117 |
elif "OPERATOR SIGNATURE" in red_text_only.upper():
|
| 1118 |
+
kv = find_matching_json_key_and_value("operator signature", flat_json)
|
| 1119 |
+
json_value = kv[1] if kv else None
|
| 1120 |
|
| 1121 |
if json_value is not None:
|
| 1122 |
replacement_text = get_value_as_string(json_value)
|
|
|
|
| 1126 |
for run in red_runs[1:]:
|
| 1127 |
run.text = ''
|
| 1128 |
replacements_made += 1
|
|
|
|
| 1129 |
return replacements_made
|
| 1130 |
|
| 1131 |
def process_headings(document, flat_json):
|
|
|
|
| 1132 |
replacements_made = 0
|
| 1133 |
print(f"\nπ Processing headings:")
|
|
|
|
| 1134 |
paragraphs = document.paragraphs
|
|
|
|
| 1135 |
for para_idx, paragraph in enumerate(paragraphs):
|
| 1136 |
paragraph_text = paragraph.text.strip()
|
| 1137 |
if not paragraph_text:
|
| 1138 |
continue
|
|
|
|
| 1139 |
matched_heading = None
|
| 1140 |
for category, patterns in HEADING_PATTERNS.items():
|
| 1141 |
for pattern in patterns:
|
|
|
|
| 1144 |
break
|
| 1145 |
if matched_heading:
|
| 1146 |
break
|
|
|
|
| 1147 |
if matched_heading:
|
| 1148 |
print(f" π Found heading at paragraph {para_idx + 1}: '{paragraph_text}'")
|
|
|
|
| 1149 |
if has_red_text_in_paragraph(paragraph):
|
| 1150 |
print(f" π΄ Found red text in heading itself")
|
| 1151 |
heading_replacements = process_red_text_in_paragraph(paragraph, paragraph_text, flat_json)
|
| 1152 |
replacements_made += heading_replacements
|
|
|
|
| 1153 |
for next_para_offset in range(1, 6):
|
| 1154 |
next_para_idx = para_idx + next_para_offset
|
| 1155 |
if next_para_idx >= len(paragraphs):
|
| 1156 |
break
|
|
|
|
| 1157 |
next_paragraph = paragraphs[next_para_idx]
|
| 1158 |
next_text = next_paragraph.text.strip()
|
|
|
|
| 1159 |
if not next_text:
|
| 1160 |
continue
|
|
|
|
| 1161 |
is_another_heading = False
|
| 1162 |
for category, patterns in HEADING_PATTERNS.items():
|
| 1163 |
for pattern in patterns:
|
|
|
|
| 1166 |
break
|
| 1167 |
if is_another_heading:
|
| 1168 |
break
|
|
|
|
| 1169 |
if is_another_heading:
|
| 1170 |
break
|
|
|
|
| 1171 |
if has_red_text_in_paragraph(next_paragraph):
|
| 1172 |
print(f" π΄ Found red text in paragraph {next_para_idx + 1} after heading")
|
| 1173 |
context_replacements = process_red_text_in_paragraph(
|
|
|
|
| 1176 |
flat_json
|
| 1177 |
)
|
| 1178 |
replacements_made += context_replacements
|
|
|
|
| 1179 |
return replacements_made
|
| 1180 |
|
| 1181 |
def process_red_text_in_paragraph(paragraph, context_text, flat_json):
|
|
|
|
| 1182 |
replacements_made = 0
|
|
|
|
| 1183 |
red_text_segments = []
|
| 1184 |
for run in paragraph.runs:
|
| 1185 |
if is_red(run) and run.text.strip():
|
| 1186 |
red_text_segments.append(run.text.strip())
|
|
|
|
| 1187 |
if not red_text_segments:
|
| 1188 |
return 0
|
|
|
|
| 1189 |
combined_red_text = " ".join(red_text_segments).strip()
|
| 1190 |
print(f" π Red text found: '{combined_red_text}'")
|
| 1191 |
+
kv = find_matching_json_key_and_value(combined_red_text, flat_json)
|
| 1192 |
+
json_value = kv[1] if kv else None
|
|
|
|
| 1193 |
|
| 1194 |
if json_value is None:
|
| 1195 |
if "NHVAS APPROVED AUDITOR" in context_text.upper():
|
| 1196 |
auditor_fields = ["auditor name", "auditor", "nhvas auditor", "approved auditor", "print name"]
|
| 1197 |
for field in auditor_fields:
|
| 1198 |
+
kv = find_matching_json_key_and_value(field, flat_json)
|
| 1199 |
+
if kv:
|
| 1200 |
+
print(f" β
Found auditor match with field: '{kv[0]}'")
|
| 1201 |
+
json_value = kv[1]
|
| 1202 |
break
|
|
|
|
| 1203 |
elif "OPERATOR DECLARATION" in context_text.upper():
|
| 1204 |
operator_fields = ["operator name", "operator", "company name", "organisation name", "print name"]
|
| 1205 |
for field in operator_fields:
|
| 1206 |
+
kv = find_matching_json_key_and_value(field, flat_json)
|
| 1207 |
+
if kv:
|
| 1208 |
+
print(f" β
Found operator match with field: '{kv[0]}'")
|
| 1209 |
+
json_value = kv[1]
|
| 1210 |
break
|
| 1211 |
|
| 1212 |
if json_value is None:
|
| 1213 |
+
context_queries = [f"{context_text} {combined_red_text}", combined_red_text, context_text]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1214 |
for query in context_queries:
|
| 1215 |
+
kv = find_matching_json_key_and_value(query, flat_json)
|
| 1216 |
+
if kv:
|
| 1217 |
+
print(f" β
Found match with combined query -> {kv[0]}")
|
| 1218 |
+
json_value = kv[1]
|
| 1219 |
break
|
| 1220 |
|
| 1221 |
if json_value is not None:
|
|
|
|
| 1234 |
return replacements_made
|
| 1235 |
|
| 1236 |
# ============================================================================
|
| 1237 |
+
# Orchestrator
|
| 1238 |
# ============================================================================
|
|
|
|
| 1239 |
def process_hf(json_file, docx_file, output_file):
|
|
|
|
| 1240 |
try:
|
|
|
|
| 1241 |
if hasattr(json_file, "read"):
|
| 1242 |
json_data = json.load(json_file)
|
| 1243 |
else:
|
|
|
|
| 1251 |
print(f" - {key}: {value}")
|
| 1252 |
print(f" ... and {len(flat_json) - 10} more keys\n")
|
| 1253 |
|
|
|
|
| 1254 |
if hasattr(docx_file, "read"):
|
| 1255 |
doc = Document(docx_file)
|
| 1256 |
else:
|
| 1257 |
doc = Document(docx_file)
|
| 1258 |
|
|
|
|
| 1259 |
print("π Starting comprehensive document processing...")
|
|
|
|
| 1260 |
table_replacements = process_tables(doc, flat_json)
|
| 1261 |
paragraph_replacements = process_paragraphs(doc, flat_json)
|
| 1262 |
heading_replacements = process_headings(doc, flat_json)
|
|
|
|
| 1263 |
total_replacements = table_replacements + paragraph_replacements + heading_replacements
|
| 1264 |
|
| 1265 |
# Save unmatched headers for iterative improvement
|
|
|
|
| 1272 |
except Exception as e:
|
| 1273 |
print(f"β οΈ Could not save unmatched headers: {e}")
|
| 1274 |
|
|
|
|
| 1275 |
if hasattr(output_file, "write"):
|
| 1276 |
doc.save(output_file)
|
| 1277 |
else:
|
|
|
|
| 1278 |
doc.save(output_file)
|
| 1279 |
|
| 1280 |
print(f"\nβ
Document saved as: {output_file}")
|
|
|
|
| 1291 |
import traceback
|
| 1292 |
traceback.print_exc()
|
| 1293 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1294 |
if __name__ == "__main__":
|
| 1295 |
import sys
|
| 1296 |
if len(sys.argv) != 4:
|