Spaces:
Running
Running
Upload 4 files
Browse files- extract_pdf_data.py +33 -0
- extract_red_text.py +335 -0
- update_docx_with_pdf.py +56 -0
- updated_word.py +605 -0
extract_pdf_data.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pdfplumber
|
| 2 |
+
from pdf2image import convert_from_path
|
| 3 |
+
import pytesseract
|
| 4 |
+
|
| 5 |
+
def extract_pdf_full_text(pdf_path, txt_path):
|
| 6 |
+
raw_texts = []
|
| 7 |
+
need_ocr = []
|
| 8 |
+
# Step 1: Try to extract RAW text, record which pages need OCR
|
| 9 |
+
with pdfplumber.open(pdf_path) as pdf:
|
| 10 |
+
for i, page in enumerate(pdf.pages):
|
| 11 |
+
print(f"Extracting text from page {i+1}...")
|
| 12 |
+
text = page.extract_text() or ""
|
| 13 |
+
if text.strip():
|
| 14 |
+
raw_texts.append(f"\n--- PAGE {i+1} RAW TEXT ---\n{text.strip()}")
|
| 15 |
+
else:
|
| 16 |
+
raw_texts.append(None) # Mark that we need OCR for this page
|
| 17 |
+
need_ocr.append(i)
|
| 18 |
+
|
| 19 |
+
# Step 2: OCR only those pages with no RAW text
|
| 20 |
+
print("Running OCR where RAW text is missing...")
|
| 21 |
+
images = convert_from_path(pdf_path, dpi=300)
|
| 22 |
+
for idx in need_ocr:
|
| 23 |
+
ocr_text = pytesseract.image_to_string(images[idx])
|
| 24 |
+
raw_texts[idx] = f"\n--- PAGE {idx+1} OCR TEXT ---\n{ocr_text.strip()}"
|
| 25 |
+
|
| 26 |
+
# Step 3: Save to file (skip any leftover Nones, but there shouldn't be any)
|
| 27 |
+
result = [txt for txt in raw_texts if txt]
|
| 28 |
+
with open(txt_path, "w", encoding="utf-8") as f:
|
| 29 |
+
f.write("\n".join(result))
|
| 30 |
+
print(f"β
Saved deduped full text to {txt_path}")
|
| 31 |
+
|
| 32 |
+
if __name__ == "__main__":
|
| 33 |
+
extract_pdf_full_text("test1.pdf", "pdf_all_text_full.txt")
|
extract_red_text.py
ADDED
|
@@ -0,0 +1,335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
import re, json, sys
|
| 3 |
+
from docx import Document
|
| 4 |
+
from docx.oxml.ns import qn
|
| 5 |
+
|
| 6 |
+
def is_red_font(run) -> bool:
|
| 7 |
+
"""Return True if this run is coloured red-ish."""
|
| 8 |
+
col = run.font.color
|
| 9 |
+
if col and col.rgb:
|
| 10 |
+
r,g,b = col.rgb[0], col.rgb[1], col.rgb[2]
|
| 11 |
+
if r>150 and g<100 and b<100 and (r-g)>30 and (r-b)>30:
|
| 12 |
+
return True
|
| 13 |
+
# fallback: raw <w:color w:val="XXXXXX"/>
|
| 14 |
+
rPr = getattr(run._element, "rPr", None)
|
| 15 |
+
if rPr is not None:
|
| 16 |
+
clr = rPr.find(qn('w:color'))
|
| 17 |
+
if clr is not None:
|
| 18 |
+
val = clr.get(qn('w:val'))
|
| 19 |
+
if re.fullmatch(r"[0-9A-Fa-f]{6}", val):
|
| 20 |
+
rr,gg,bb = int(val[:2],16), int(val[2:4],16), int(val[4:],16)
|
| 21 |
+
if rr>150 and gg<100 and bb<100 and (rr-gg)>30 and (rr-bb)>30:
|
| 22 |
+
return True
|
| 23 |
+
return False
|
| 24 |
+
|
| 25 |
+
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 26 |
+
# Your template, mapped 1:1 to doc.tables[0..18]
|
| 27 |
+
MASTER_TABLES = [
|
| 28 |
+
# Table 0: Tick as appropriate (Mass, Maintenance, etc.)
|
| 29 |
+
{
|
| 30 |
+
"name": "Tick as appropriate",
|
| 31 |
+
"labels_on_row1": True,
|
| 32 |
+
"labels": [
|
| 33 |
+
"Mass", "Maintenance", "Basic Fatigue", "Advanced Fatigue",
|
| 34 |
+
"Entry Audit", "Initial Compliance Audit", "Compliance Audit",
|
| 35 |
+
"Spot Check", "Triggered Audit"
|
| 36 |
+
]
|
| 37 |
+
},
|
| 38 |
+
|
| 39 |
+
# Table 1: Audit Information
|
| 40 |
+
{
|
| 41 |
+
"name": "Audit Information",
|
| 42 |
+
"labels_on_left": True,
|
| 43 |
+
"labels": [
|
| 44 |
+
"Date of Audit",
|
| 45 |
+
"Location of audit",
|
| 46 |
+
"Auditor name",
|
| 47 |
+
"Audit Matrix Identifier (Name or Number)", # Corrected full label
|
| 48 |
+
"Auditor Exemplar Global Reg No.",
|
| 49 |
+
"expiry Date:",
|
| 50 |
+
"NHVR Auditor Registration Number",
|
| 51 |
+
"expiry Date:" # Note: Duplicate label, might need special handling
|
| 52 |
+
]
|
| 53 |
+
},
|
| 54 |
+
|
| 55 |
+
# Table 2: Operator Information (including contact details)
|
| 56 |
+
{
|
| 57 |
+
"name": "Operator Information",
|
| 58 |
+
"labels_on_left": True,
|
| 59 |
+
"skip_rows": ["Operator contact details", ""], # Skip subheading and blank rows
|
| 60 |
+
"labels": [
|
| 61 |
+
"Operator name (Legal entity)",
|
| 62 |
+
"NHVAS Accreditation No. (If applicable)",
|
| 63 |
+
"Registered trading name/s",
|
| 64 |
+
"Australian Company Number",
|
| 65 |
+
"NHVAS Manual (Policies and Procedures) developed by",
|
| 66 |
+
"Operator business address",
|
| 67 |
+
"Operator Postal address",
|
| 68 |
+
"Email address",
|
| 69 |
+
"Operator Telephone Number"
|
| 70 |
+
]
|
| 71 |
+
},
|
| 72 |
+
|
| 73 |
+
# Table 3: Attendance List
|
| 74 |
+
{
|
| 75 |
+
"name": "Attendance List (Names and Position Titles)",
|
| 76 |
+
"labels": ["Attendance List (Names and Position Titles)"]
|
| 77 |
+
},
|
| 78 |
+
|
| 79 |
+
# Table 4: Nature of the Operators Business
|
| 80 |
+
{
|
| 81 |
+
"name": "Nature of the Operators Business (Summary)",
|
| 82 |
+
"labels": [
|
| 83 |
+
"Nature of the Operators Business (Summary)",
|
| 84 |
+
"Accreditation Number:",
|
| 85 |
+
"Expiry Date:"
|
| 86 |
+
]
|
| 87 |
+
},
|
| 88 |
+
|
| 89 |
+
# Table 5: Accreditation Vehicle Summary
|
| 90 |
+
{
|
| 91 |
+
"name": "Accreditation Vehicle Summary",
|
| 92 |
+
"labels_on_left": True,
|
| 93 |
+
"labels": [
|
| 94 |
+
"Number of powered vehicles",
|
| 95 |
+
"Number of trailing vehicles"
|
| 96 |
+
]
|
| 97 |
+
},
|
| 98 |
+
|
| 99 |
+
# Table 6: Accreditation Driver Summary
|
| 100 |
+
{
|
| 101 |
+
"name": "Accreditation Driver Summary",
|
| 102 |
+
"labels_on_left": True,
|
| 103 |
+
"labels": [
|
| 104 |
+
"Number of drivers in BFM",
|
| 105 |
+
"Number of drivers in AFM"
|
| 106 |
+
]
|
| 107 |
+
},
|
| 108 |
+
|
| 109 |
+
# Table 7: Compliance Codes
|
| 110 |
+
{
|
| 111 |
+
"name": "Compliance Codes",
|
| 112 |
+
"labels_on_row1": True,
|
| 113 |
+
"labels": ["V", "SFI", "NA", "NC", "NAP"]
|
| 114 |
+
},
|
| 115 |
+
|
| 116 |
+
# Table 8: Corrective Action Request Identification
|
| 117 |
+
{
|
| 118 |
+
"name": "Corrective Action Request Identification",
|
| 119 |
+
"labels_on_row1": True,
|
| 120 |
+
"labels": ["Title", "Abbreviation", "Description"]
|
| 121 |
+
},
|
| 122 |
+
|
| 123 |
+
# Table 9: MASS MANAGEMENT (Standards 1-8)
|
| 124 |
+
{
|
| 125 |
+
"name": "MASS MANAGEMENT",
|
| 126 |
+
"labels_on_left": True,
|
| 127 |
+
"labels": [
|
| 128 |
+
"Std 1. Responsibilities",
|
| 129 |
+
"Std 2. Vehicle Control",
|
| 130 |
+
"Std 3. Vehicle Use",
|
| 131 |
+
"Std 4. Records and Documentation",
|
| 132 |
+
"Std 5. Verification",
|
| 133 |
+
"Std 6. Internal Review",
|
| 134 |
+
"Std 7. Training and Education",
|
| 135 |
+
"Std 8. Maintenance of Suspension"
|
| 136 |
+
]
|
| 137 |
+
},
|
| 138 |
+
|
| 139 |
+
# Table 10: Mass Management Summary of Audit findings (Standards 1-8)
|
| 140 |
+
{
|
| 141 |
+
"name": "Mass Management Summary of Audit findings",
|
| 142 |
+
"labels_on_left": True,
|
| 143 |
+
"labels": [
|
| 144 |
+
"Std 1. Responsibilities",
|
| 145 |
+
"Std 2. Vehicle Control",
|
| 146 |
+
"Std 3. Vehicle Use",
|
| 147 |
+
"Std 4. Records and Documentation",
|
| 148 |
+
"Std 5. Verification",
|
| 149 |
+
"Std 6. Internal Review",
|
| 150 |
+
"Std 7. Training and Education",
|
| 151 |
+
"Std 8. Maintenance of Suspension"
|
| 152 |
+
]
|
| 153 |
+
},
|
| 154 |
+
|
| 155 |
+
# Table 11: Vehicle Registration Numbers of Records Examined
|
| 156 |
+
{
|
| 157 |
+
"name": "Vehicle Registration Numbers of Records Examined",
|
| 158 |
+
"labels_on_row1": True,
|
| 159 |
+
"labels": [
|
| 160 |
+
"No.", "Registration Number",
|
| 161 |
+
"Sub-contractor (Yes/No)",
|
| 162 |
+
"Sub-contracted Vehicles Statement of Compliance (Yes/No)",
|
| 163 |
+
"Weight Verification Records (Date Range)",
|
| 164 |
+
"RFS Suspension Certification # (N/A if not applicable)",
|
| 165 |
+
"Suspension System Maintenance (Date Range)",
|
| 166 |
+
"Trip Records (Date Range)",
|
| 167 |
+
"Fault Recording/ Reporting on Suspension System (Date Range)"
|
| 168 |
+
]
|
| 169 |
+
},
|
| 170 |
+
|
| 171 |
+
# Table 12: Operator's Name (legal entity) - Signature block
|
| 172 |
+
{
|
| 173 |
+
"name": "Operatorβs Name (legal entity)",
|
| 174 |
+
"labels": ["Operatorβs Name (legal entity)"]
|
| 175 |
+
},
|
| 176 |
+
|
| 177 |
+
# Table 13: Non-conformance type
|
| 178 |
+
{
|
| 179 |
+
"name": "Non-conformance type (please tick)",
|
| 180 |
+
"labels": ["Un-conditional", "Conditional"]
|
| 181 |
+
},
|
| 182 |
+
|
| 183 |
+
# Table 14: Non-conformance Information
|
| 184 |
+
{
|
| 185 |
+
"name": "Non-conformance Information",
|
| 186 |
+
"labels_on_row1": True,
|
| 187 |
+
"labels": [
|
| 188 |
+
"Non-conformance agreed close out date",
|
| 189 |
+
"Module and Standard",
|
| 190 |
+
"Corrective Action Request (CAR) Number"
|
| 191 |
+
]
|
| 192 |
+
},
|
| 193 |
+
|
| 194 |
+
# Table 15: Non-conformance and action taken
|
| 195 |
+
{
|
| 196 |
+
"name": "Non-conformance and action taken",
|
| 197 |
+
"labels_on_row1": True,
|
| 198 |
+
"labels": [
|
| 199 |
+
"Observed Non-conformance:",
|
| 200 |
+
"Corrective Action taken or to be taken by operator:",
|
| 201 |
+
"Operator or Representative Signature", "Position", "Date"
|
| 202 |
+
]
|
| 203 |
+
},
|
| 204 |
+
|
| 205 |
+
# Table 16: Print Name / Auditor Reg Number
|
| 206 |
+
{
|
| 207 |
+
"name": "Print Name / Auditor Reg Number",
|
| 208 |
+
"labels_on_row1": True,
|
| 209 |
+
"labels": [
|
| 210 |
+
"Print Name",
|
| 211 |
+
"NHVR or Exemplar Global Auditor Registration Number"
|
| 212 |
+
]
|
| 213 |
+
},
|
| 214 |
+
|
| 215 |
+
# Table 17: Audit Declaration
|
| 216 |
+
{
|
| 217 |
+
"name": "Audit Declaration",
|
| 218 |
+
"labels_on_left": True,
|
| 219 |
+
"labels": [
|
| 220 |
+
"Audit was conducted on",
|
| 221 |
+
"Unconditional CARs closed out on:",
|
| 222 |
+
"Conditional CARs to be closed out by:"
|
| 223 |
+
]
|
| 224 |
+
},
|
| 225 |
+
|
| 226 |
+
# Table 18: print accreditation name
|
| 227 |
+
{
|
| 228 |
+
"name": "print accreditation name",
|
| 229 |
+
"labels": ["print accreditation name"]
|
| 230 |
+
},
|
| 231 |
+
|
| 232 |
+
# Table 19: Operator Declaration
|
| 233 |
+
{
|
| 234 |
+
"name": "Operator Declaration",
|
| 235 |
+
"labels_on_row1": True,
|
| 236 |
+
"labels": ["Print Name", "Position Title"]
|
| 237 |
+
}
|
| 238 |
+
]
|
| 239 |
+
|
| 240 |
+
def extract_red_text(path):
|
| 241 |
+
doc = Document(path)
|
| 242 |
+
|
| 243 |
+
# debug print
|
| 244 |
+
print(f"Found {len(doc.tables)} tables:")
|
| 245 |
+
for i,t in enumerate(doc.tables):
|
| 246 |
+
print(f" Table#{i}: β{t.rows[0].cells[0].text.strip()[:30]}β¦β")
|
| 247 |
+
print()
|
| 248 |
+
|
| 249 |
+
out = {}
|
| 250 |
+
for ti, spec in enumerate(MASTER_TABLES):
|
| 251 |
+
if ti >= len(doc.tables):
|
| 252 |
+
break
|
| 253 |
+
tbl = doc.tables[ti]
|
| 254 |
+
name = spec["name"]
|
| 255 |
+
|
| 256 |
+
# prepare container & dedupe sets
|
| 257 |
+
collected = {lbl:[] for lbl in spec["labels"]}
|
| 258 |
+
seen = {lbl:set() for lbl in spec["labels"]}
|
| 259 |
+
|
| 260 |
+
# choose orientation
|
| 261 |
+
if spec.get("labels_on_row1"):
|
| 262 |
+
headers = spec["labels"]
|
| 263 |
+
rows = tbl.rows[1:]
|
| 264 |
+
col_mode = True
|
| 265 |
+
elif spec.get("labels_on_left"):
|
| 266 |
+
headers = spec["labels"]
|
| 267 |
+
# skip any unwanted header/subheading rows
|
| 268 |
+
rows = [
|
| 269 |
+
row for row in tbl.rows[1:]
|
| 270 |
+
if row.cells[0].text.strip() not in spec.get("skip_rows",[])
|
| 271 |
+
]
|
| 272 |
+
col_mode = False
|
| 273 |
+
else:
|
| 274 |
+
headers = [name]
|
| 275 |
+
rows = tbl.rows
|
| 276 |
+
col_mode = None
|
| 277 |
+
|
| 278 |
+
# scan each cell
|
| 279 |
+
for ri,row in enumerate(rows):
|
| 280 |
+
for ci,cell in enumerate(row.cells):
|
| 281 |
+
red = "".join(
|
| 282 |
+
run.text for p in cell.paragraphs for run in p.runs
|
| 283 |
+
if is_red_font(run)
|
| 284 |
+
).strip()
|
| 285 |
+
if not red: continue
|
| 286 |
+
|
| 287 |
+
# assign label
|
| 288 |
+
if col_mode is True:
|
| 289 |
+
lbl = headers[ci] if ci<len(headers) else name
|
| 290 |
+
elif col_mode is False:
|
| 291 |
+
lbl = headers[ri] if ri<len(headers) else name
|
| 292 |
+
else:
|
| 293 |
+
lbl = name
|
| 294 |
+
|
| 295 |
+
# dedupe & collect
|
| 296 |
+
if red not in seen[lbl]:
|
| 297 |
+
seen[lbl].add(red)
|
| 298 |
+
collected[lbl].append(red)
|
| 299 |
+
|
| 300 |
+
# only keep non-empty labels
|
| 301 |
+
filtered = {l:collected[l] for l in collected if collected[l]}
|
| 302 |
+
if filtered:
|
| 303 |
+
out[name] = filtered
|
| 304 |
+
|
| 305 |
+
# paragraphs
|
| 306 |
+
paras = {}
|
| 307 |
+
for i,para in enumerate(doc.paragraphs):
|
| 308 |
+
red = "".join(r.text for r in para.runs if is_red_font(r)).strip()
|
| 309 |
+
if not red: continue
|
| 310 |
+
# find nearest non-red above
|
| 311 |
+
lab = None
|
| 312 |
+
for j in range(i-1,-1,-1):
|
| 313 |
+
if any(is_red_font(r) for r in doc.paragraphs[j].runs):
|
| 314 |
+
continue
|
| 315 |
+
txt = doc.paragraphs[j].text.strip()
|
| 316 |
+
if txt:
|
| 317 |
+
lab = txt; break
|
| 318 |
+
key = lab or "(para)"
|
| 319 |
+
paras.setdefault(key,[]).append(red)
|
| 320 |
+
|
| 321 |
+
if paras:
|
| 322 |
+
out["paragraphs"] = paras
|
| 323 |
+
return out
|
| 324 |
+
|
| 325 |
+
if __name__=="__main__":
|
| 326 |
+
fn = sys.argv[1] if len(sys.argv)>1 else "test.docx"
|
| 327 |
+
word_data = extract_red_text(fn)
|
| 328 |
+
|
| 329 |
+
# --- STORE TO JSON for later reuse ---
|
| 330 |
+
with open('word_red_data.json', 'w', encoding='utf-8') as f:
|
| 331 |
+
json.dump(word_data, f, indent=2, ensure_ascii=False)
|
| 332 |
+
# ----------------------------------------
|
| 333 |
+
|
| 334 |
+
# still print to console for immediate feedback
|
| 335 |
+
print(json.dumps(word_data, indent=2, ensure_ascii=False))
|
update_docx_with_pdf.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import openai
|
| 2 |
+
import json
|
| 3 |
+
|
| 4 |
+
# Set your OpenAI API key here
|
| 5 |
+
OPENAI_API_KEY = "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"
|
| 6 |
+
|
| 7 |
+
# Load PDF text
|
| 8 |
+
WORD_JSON_FILE = "word_red_data.json"
|
| 9 |
+
PDF_TEXT_FILE = "pdf_all_text_full.txt"
|
| 10 |
+
OUTPUT_FILE = "updated_word_data1.json"
|
| 11 |
+
|
| 12 |
+
# --- Load files ---
|
| 13 |
+
with open(WORD_JSON_FILE, "r", encoding="utf-8") as f:
|
| 14 |
+
word_json = f.read()
|
| 15 |
+
with open(PDF_TEXT_FILE, "r", encoding="utf-8") as f:
|
| 16 |
+
pdf_txt = f.read()
|
| 17 |
+
|
| 18 |
+
# --- Build prompt ---
|
| 19 |
+
user_prompt = f"""
|
| 20 |
+
Here is a JSON template. It contains only the fields that need updating:
|
| 21 |
+
{word_json}
|
| 22 |
+
|
| 23 |
+
Here is the extracted text from a PDF:
|
| 24 |
+
{pdf_txt}
|
| 25 |
+
|
| 26 |
+
Instructions:
|
| 27 |
+
- ONLY update the fields present in the JSON template, using information from the PDF text.
|
| 28 |
+
- DO NOT add any extra fields, and do not change the JSON structure.
|
| 29 |
+
- Output ONLY the updated JSON, as raw JSON (no markdown, no extra text, no greetings).
|
| 30 |
+
- Make sure the JSON is valid and ready to use.
|
| 31 |
+
"""
|
| 32 |
+
|
| 33 |
+
# --- Call OpenAI API (no env var needed) ---
|
| 34 |
+
client = openai.OpenAI(api_key=OPENAI_API_KEY)
|
| 35 |
+
response = client.chat.completions.create(
|
| 36 |
+
model="gpt-4o",
|
| 37 |
+
messages=[
|
| 38 |
+
{"role": "system", "content": "You are a data extraction assistant. Only reply with valid JSON. Do not add any extra text or formatting. Do NOT use markdown/code blocks, just output JSON."},
|
| 39 |
+
{"role": "user", "content": user_prompt}
|
| 40 |
+
],
|
| 41 |
+
max_tokens=4096,
|
| 42 |
+
temperature=0
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
updated_json_str = response.choices[0].message.content.strip()
|
| 46 |
+
|
| 47 |
+
# --- Try to parse as JSON ---
|
| 48 |
+
try:
|
| 49 |
+
parsed = json.loads(updated_json_str)
|
| 50 |
+
with open(OUTPUT_FILE, "w", encoding="utf-8") as f:
|
| 51 |
+
json.dump(parsed, f, indent=2, ensure_ascii=False)
|
| 52 |
+
print("β
JSON updated and saved to", OUTPUT_FILE)
|
| 53 |
+
except Exception as e:
|
| 54 |
+
print("β οΈ Model did not return valid JSON. Raw output below:\n")
|
| 55 |
+
print(updated_json_str)
|
| 56 |
+
print("\nβ Failed to parse updated JSON:", e)
|
updated_word.py
ADDED
|
@@ -0,0 +1,605 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from docx import Document
|
| 3 |
+
from docx.shared import RGBColor
|
| 4 |
+
import re
|
| 5 |
+
|
| 6 |
+
def load_json(filepath):
|
| 7 |
+
with open(filepath, 'r') as file:
|
| 8 |
+
return json.load(file)
|
| 9 |
+
|
| 10 |
+
def flatten_json(y, prefix=''):
|
| 11 |
+
out = {}
|
| 12 |
+
for key, val in y.items():
|
| 13 |
+
new_key = f"{prefix}.{key}" if prefix else key
|
| 14 |
+
if isinstance(val, dict):
|
| 15 |
+
out.update(flatten_json(val, new_key))
|
| 16 |
+
else:
|
| 17 |
+
out[new_key] = val
|
| 18 |
+
out[key] = val
|
| 19 |
+
return out
|
| 20 |
+
|
| 21 |
+
def is_red(run):
|
| 22 |
+
color = run.font.color
|
| 23 |
+
return color and (color.rgb == RGBColor(255, 0, 0) or getattr(color, "theme_color", None) == 1)
|
| 24 |
+
|
| 25 |
+
def get_value_as_string(value, field_name=""):
|
| 26 |
+
if isinstance(value, list):
|
| 27 |
+
if len(value) == 0:
|
| 28 |
+
return ""
|
| 29 |
+
elif len(value) == 1:
|
| 30 |
+
return str(value[0])
|
| 31 |
+
else:
|
| 32 |
+
if "australian company number" in field_name.lower() or "company number" in field_name.lower():
|
| 33 |
+
return value
|
| 34 |
+
else:
|
| 35 |
+
return " ".join(str(v) for v in value)
|
| 36 |
+
else:
|
| 37 |
+
return str(value)
|
| 38 |
+
|
| 39 |
+
def find_matching_json_value(field_name, flat_json):
|
| 40 |
+
"""Find matching JSON value based on field name (key)"""
|
| 41 |
+
field_name = field_name.strip()
|
| 42 |
+
|
| 43 |
+
# Manual mapping for specific sections that need special handling
|
| 44 |
+
manual_mappings = {
|
| 45 |
+
"attendance list name and position title": "Attendance List (Names and Position Titles).Attendance List (Names and Position Titles)",
|
| 46 |
+
"attendance list (names and position titles)": "Attendance List (Names and Position Titles).Attendance List (Names and Position Titles)",
|
| 47 |
+
"nature of the operators business (summary)": "Nature of the Operators Business (Summary).Nature of the Operators Business (Summary)",
|
| 48 |
+
"nature of the operators business (summary):": "Nature of the Operators Business (Summary).Nature of the Operators Business (Summary)",
|
| 49 |
+
"nature of operators business (summary)": "Nature of the Operators Business (Summary).Nature of the Operators Business (Summary)",
|
| 50 |
+
"nature of operators business (summary):": "Nature of the Operators Business (Summary).Nature of the Operators Business (Summary)",
|
| 51 |
+
# Paragraph-level mappings
|
| 52 |
+
"mass management": "paragraphs.MASS MANAGEMENT",
|
| 53 |
+
"liam herbig": "paragraphs.MASS MANAGEMENT", # Name should be replaced with company name
|
| 54 |
+
"date": "paragraphs.This management system I have audited when followed will ensure compliance with the relevant NHVAS Business Rules & Standards.",
|
| 55 |
+
# Date-related mappings
|
| 56 |
+
"13.11.2024": "paragraphs.This management system I have audited when followed will ensure compliance with the relevant NHVAS Business Rules & Standards.",
|
| 57 |
+
"auditor signature": "paragraphs.This management system I have audited when followed will ensure compliance with the relevant NHVAS Business Rules & Standards.",
|
| 58 |
+
"operator signature": "paragraphs.I hereby consent to information relating to my Accreditation to be shared with other law enforcement agencies, including a service provider authorised under the Heavy Vehicle National Law.",
|
| 59 |
+
# Specific data mappings
|
| 60 |
+
"jodie jones": "Audit Information.Auditor name",
|
| 61 |
+
"13th november 2024": "Audit Information.Date of Audit",
|
| 62 |
+
"adelaide barossa transport & warehousing pty ltd": "Operator Information.Operator name (Legal entity)",
|
| 63 |
+
"manager": "Operator Information.Operator name (Legal entity)", # Replace manager title with company name
|
| 64 |
+
"liam herbig βmanager": "Operator Information.Operator name (Legal entity)",
|
| 65 |
+
"liam herbig β manager": "Operator Information.Operator name (Legal entity)",
|
| 66 |
+
"deborah herbig β manager": "Operator Information.Operator name (Legal entity)",
|
| 67 |
+
# Contact information mappings (old data in red text -> new data from JSON)
|
| 68 |
+
"141 sitz road callington sa 5254": "Operator Information.Operator business address", # Replace old address with new
|
| 69 |
+
"po box 743 mt barker sa": "Operator Information.Operator Postal address", # Replace old postal with new
|
| 70 |
+
"debherbig@bigpond.com": "Operator Information.Email address", # Replace old email with new
|
| 71 |
+
"0447 710 602": "Operator Information.Operator Telephone Number", # Replace old phone with new
|
| 72 |
+
# Manual/Version mappings (old version -> new version)
|
| 73 |
+
"mahlo 092021v1": "Operator Information.NHVAS Manual (Policies and Procedures) developed by", # Replace old manual with new
|
| 74 |
+
# These should stay as they are (no replacement needed, just different format)
|
| 75 |
+
"511840": "Operator Information.NHVAS Accreditation No. (If applicable)", # Keep accreditation number
|
| 76 |
+
"26th october 2023": "Audit Information.Date of Audit", # Use audit date instead
|
| 77 |
+
# Std 5 and Std 6 mappings
|
| 78 |
+
"the latest verification was dated 23rdnovember 2022": "Mass Management Summary of Audit findings.Std 5. Verification",
|
| 79 |
+
"the latest verification was dated 23rd november 2022": "Mass Management Summary of Audit findings.Std 5. Verification",
|
| 80 |
+
"internal review was dated 23rd august 2023 with 0 ncr": "Mass Management Summary of Audit findings.Std 6. Internal Review",
|
| 81 |
+
"23rd august2023 with 0 trips, 0 trips using mass, 0 overloads and 0 ncr's": "Mass Management Summary of Audit findings.Std 6. Internal Review",
|
| 82 |
+
"23rd august 2023 with 0 trips, 0 trips using mass, 0 overloads and 0 ncr's": "Mass Management Summary of Audit findings.Std 6. Internal Review",
|
| 83 |
+
}
|
| 84 |
+
|
| 85 |
+
# Check manual mappings first
|
| 86 |
+
normalized_field = field_name.lower().strip()
|
| 87 |
+
if normalized_field in manual_mappings:
|
| 88 |
+
mapped_key = manual_mappings[normalized_field]
|
| 89 |
+
if mapped_key in flat_json:
|
| 90 |
+
print(f" β
Manual mapping found for '{field_name}' -> '{mapped_key}'")
|
| 91 |
+
return flat_json[mapped_key]
|
| 92 |
+
|
| 93 |
+
# Try exact match first
|
| 94 |
+
if field_name in flat_json:
|
| 95 |
+
print(f" Direct match found for key '{field_name}'")
|
| 96 |
+
return flat_json[field_name]
|
| 97 |
+
|
| 98 |
+
# Try case-insensitive exact match
|
| 99 |
+
for key, value in flat_json.items():
|
| 100 |
+
if key.lower() == field_name.lower():
|
| 101 |
+
print(f" Case-insensitive match found for key '{field_name}' with JSON key '{key}'")
|
| 102 |
+
return value
|
| 103 |
+
|
| 104 |
+
# Try to find a key that ends with this field name
|
| 105 |
+
for key, value in flat_json.items():
|
| 106 |
+
if key.endswith('.' + field_name):
|
| 107 |
+
print(f" Suffix match found for key '{field_name}' with JSON key '{key}'")
|
| 108 |
+
return value
|
| 109 |
+
|
| 110 |
+
# Try partial matching for fields with parentheses or additional text
|
| 111 |
+
clean_field = re.sub(r'\s*\([^)]*\)', '', field_name).strip() # Remove parentheses content
|
| 112 |
+
for key, value in flat_json.items():
|
| 113 |
+
clean_key = re.sub(r'\s*\([^)]*\)', '', key).strip()
|
| 114 |
+
if clean_field.lower() == clean_key.lower():
|
| 115 |
+
print(f" Clean match found for key '{field_name}' with JSON key '{key}'")
|
| 116 |
+
return value
|
| 117 |
+
|
| 118 |
+
# Try word-based matching - more flexible approach
|
| 119 |
+
field_words = set(word.lower() for word in re.findall(r'\b\w+\b', field_name) if len(word) > 2)
|
| 120 |
+
best_match = None
|
| 121 |
+
best_score = 0
|
| 122 |
+
|
| 123 |
+
for key, value in flat_json.items():
|
| 124 |
+
key_words = set(word.lower() for word in re.findall(r'\b\w+\b', key) if len(word) > 2)
|
| 125 |
+
# Calculate how many words match
|
| 126 |
+
common_words = field_words.intersection(key_words)
|
| 127 |
+
if common_words:
|
| 128 |
+
score = len(common_words) / max(len(field_words), len(key_words)) # Normalized score
|
| 129 |
+
if score > best_score:
|
| 130 |
+
best_score = score
|
| 131 |
+
best_match = (key, value)
|
| 132 |
+
|
| 133 |
+
if best_match and best_score >= 0.5: # At least 50% word overlap
|
| 134 |
+
print(f" Word-based match found for key '{field_name}' with JSON key '{best_match[0]}' (score: {best_score:.2f})")
|
| 135 |
+
return best_match[1]
|
| 136 |
+
|
| 137 |
+
# No match found
|
| 138 |
+
print(f" β No match found for '{field_name}'")
|
| 139 |
+
return None
|
| 140 |
+
|
| 141 |
+
def get_clean_text(cell):
|
| 142 |
+
text = ""
|
| 143 |
+
for paragraph in cell.paragraphs:
|
| 144 |
+
for run in paragraph.runs:
|
| 145 |
+
text += run.text
|
| 146 |
+
return text.strip()
|
| 147 |
+
|
| 148 |
+
def has_red_text(cell):
|
| 149 |
+
for paragraph in cell.paragraphs:
|
| 150 |
+
for run in paragraph.runs:
|
| 151 |
+
if is_red(run) and run.text.strip():
|
| 152 |
+
return True
|
| 153 |
+
return False
|
| 154 |
+
|
| 155 |
+
def replace_red_text_in_cell(cell, replacement_text):
|
| 156 |
+
replacements_made = 0
|
| 157 |
+
|
| 158 |
+
# First, collect all red text to show what we're replacing
|
| 159 |
+
all_red_text = ""
|
| 160 |
+
for paragraph in cell.paragraphs:
|
| 161 |
+
for run in paragraph.runs:
|
| 162 |
+
if is_red(run):
|
| 163 |
+
all_red_text += run.text
|
| 164 |
+
|
| 165 |
+
if all_red_text.strip():
|
| 166 |
+
print(f" β
Replacing red text: '{all_red_text[:50]}...' β '{replacement_text[:50]}...'")
|
| 167 |
+
|
| 168 |
+
# Now replace all red text in the cell with the replacement text
|
| 169 |
+
first_replacement_done = False
|
| 170 |
+
for paragraph in cell.paragraphs:
|
| 171 |
+
red_runs = [run for run in paragraph.runs if is_red(run)]
|
| 172 |
+
if red_runs:
|
| 173 |
+
if not first_replacement_done:
|
| 174 |
+
# Replace the first red run with our text
|
| 175 |
+
red_runs[0].text = replacement_text
|
| 176 |
+
red_runs[0].font.color.rgb = RGBColor(0, 0, 0)
|
| 177 |
+
first_replacement_done = True
|
| 178 |
+
replacements_made = 1
|
| 179 |
+
else:
|
| 180 |
+
# Clear the first red run since we already replaced content
|
| 181 |
+
red_runs[0].text = ''
|
| 182 |
+
|
| 183 |
+
# Clear all other red runs in this paragraph
|
| 184 |
+
for run in red_runs[1:]:
|
| 185 |
+
run.text = ''
|
| 186 |
+
|
| 187 |
+
return replacements_made
|
| 188 |
+
|
| 189 |
+
def handle_australian_company_number(row, company_numbers):
|
| 190 |
+
replacements_made = 0
|
| 191 |
+
for i, digit in enumerate(company_numbers):
|
| 192 |
+
cell_idx = i + 1
|
| 193 |
+
if cell_idx < len(row.cells):
|
| 194 |
+
cell = row.cells[cell_idx]
|
| 195 |
+
if has_red_text(cell):
|
| 196 |
+
cell_replacements = replace_red_text_in_cell(cell, str(digit))
|
| 197 |
+
replacements_made += cell_replacements
|
| 198 |
+
print(f" -> Placed digit '{digit}' in cell {cell_idx + 1}")
|
| 199 |
+
return replacements_made
|
| 200 |
+
|
| 201 |
+
def handle_vehicle_registration_table(table, flat_json):
|
| 202 |
+
"""Handle the Vehicle Registration Numbers table with column-based data"""
|
| 203 |
+
replacements_made = 0
|
| 204 |
+
|
| 205 |
+
# Look for the vehicle registration data in the flattened JSON
|
| 206 |
+
vehicle_section = None
|
| 207 |
+
|
| 208 |
+
# Try to find the vehicle registration section
|
| 209 |
+
for key, value in flat_json.items():
|
| 210 |
+
if "vehicle registration numbers of records examined" in key.lower():
|
| 211 |
+
if isinstance(value, dict): # This should be the nested structure
|
| 212 |
+
vehicle_section = value
|
| 213 |
+
print(f" β
Found vehicle data in key: '{key}'")
|
| 214 |
+
break
|
| 215 |
+
|
| 216 |
+
if not vehicle_section:
|
| 217 |
+
# Try alternative approach - look for individual column keys
|
| 218 |
+
potential_columns = {}
|
| 219 |
+
for key, value in flat_json.items():
|
| 220 |
+
if any(col_name in key.lower() for col_name in ["registration number", "sub-contractor", "weight verification", "rfs suspension"]):
|
| 221 |
+
# Extract the column name from the flattened key
|
| 222 |
+
if "." in key:
|
| 223 |
+
column_name = key.split(".")[-1]
|
| 224 |
+
else:
|
| 225 |
+
column_name = key
|
| 226 |
+
potential_columns[column_name] = value
|
| 227 |
+
|
| 228 |
+
if potential_columns:
|
| 229 |
+
vehicle_section = potential_columns
|
| 230 |
+
print(f" β
Found vehicle data from flattened keys: {list(vehicle_section.keys())}")
|
| 231 |
+
else:
|
| 232 |
+
print(f" β Vehicle registration data not found in JSON")
|
| 233 |
+
return 0
|
| 234 |
+
|
| 235 |
+
print(f" β
Found vehicle registration data with {len(vehicle_section)} columns")
|
| 236 |
+
|
| 237 |
+
# Find header row (usually row 0 or 1)
|
| 238 |
+
header_row_idx = -1
|
| 239 |
+
header_row = None
|
| 240 |
+
|
| 241 |
+
for row_idx, row in enumerate(table.rows):
|
| 242 |
+
row_text = "".join(get_clean_text(cell).lower() for cell in row.cells)
|
| 243 |
+
if "registration" in row_text and "number" in row_text:
|
| 244 |
+
header_row_idx = row_idx
|
| 245 |
+
header_row = row
|
| 246 |
+
break
|
| 247 |
+
|
| 248 |
+
if header_row_idx == -1:
|
| 249 |
+
print(f" β Could not find header row in vehicle table")
|
| 250 |
+
return 0
|
| 251 |
+
|
| 252 |
+
print(f" β
Found header row at index {header_row_idx}")
|
| 253 |
+
|
| 254 |
+
# Create mapping between column indices and JSON keys
|
| 255 |
+
column_mapping = {}
|
| 256 |
+
for col_idx, cell in enumerate(header_row.cells):
|
| 257 |
+
header_text = get_clean_text(cell).strip()
|
| 258 |
+
if not header_text or header_text.lower() == "no.":
|
| 259 |
+
continue
|
| 260 |
+
|
| 261 |
+
# Try to match header text with JSON keys
|
| 262 |
+
best_match = None
|
| 263 |
+
best_score = 0
|
| 264 |
+
|
| 265 |
+
# Normalize header text for better matching
|
| 266 |
+
normalized_header = header_text.lower().replace("(", " (").replace(")", ") ").strip()
|
| 267 |
+
|
| 268 |
+
for json_key in vehicle_section.keys():
|
| 269 |
+
normalized_json = json_key.lower().strip()
|
| 270 |
+
|
| 271 |
+
# Try exact match first (after normalization)
|
| 272 |
+
if normalized_header == normalized_json:
|
| 273 |
+
best_match = json_key
|
| 274 |
+
best_score = 1.0
|
| 275 |
+
break
|
| 276 |
+
|
| 277 |
+
# Try word-based matching
|
| 278 |
+
header_words = set(word.lower() for word in normalized_header.split() if len(word) > 2)
|
| 279 |
+
json_words = set(word.lower() for word in normalized_json.split() if len(word) > 2)
|
| 280 |
+
|
| 281 |
+
if header_words and json_words:
|
| 282 |
+
common_words = header_words.intersection(json_words)
|
| 283 |
+
score = len(common_words) / max(len(header_words), len(json_words))
|
| 284 |
+
|
| 285 |
+
if score > best_score and score >= 0.3: # At least 30% match
|
| 286 |
+
best_score = score
|
| 287 |
+
best_match = json_key
|
| 288 |
+
|
| 289 |
+
# Try substring matching for cases like "RegistrationNumber" vs "Registration Number"
|
| 290 |
+
header_clean = normalized_header.replace(" ", "").replace("-", "").replace("(", "").replace(")", "")
|
| 291 |
+
json_clean = normalized_json.replace(" ", "").replace("-", "").replace("(", "").replace(")", "")
|
| 292 |
+
|
| 293 |
+
if header_clean in json_clean or json_clean in header_clean:
|
| 294 |
+
if len(header_clean) > 5 and len(json_clean) > 5: # Only for meaningful matches
|
| 295 |
+
substring_score = min(len(header_clean), len(json_clean)) / max(len(header_clean), len(json_clean))
|
| 296 |
+
if substring_score > best_score and substring_score >= 0.6:
|
| 297 |
+
best_score = substring_score
|
| 298 |
+
best_match = json_key
|
| 299 |
+
|
| 300 |
+
if best_match:
|
| 301 |
+
column_mapping[col_idx] = best_match
|
| 302 |
+
print(f" π Column {col_idx + 1} ('{header_text}') -> '{best_match}' (score: {best_score:.2f})")
|
| 303 |
+
|
| 304 |
+
if not column_mapping:
|
| 305 |
+
print(f" β No column mappings found")
|
| 306 |
+
return 0
|
| 307 |
+
|
| 308 |
+
# Determine how many data rows we need based on the JSON arrays
|
| 309 |
+
max_data_rows = 0
|
| 310 |
+
for json_key, data in vehicle_section.items():
|
| 311 |
+
if isinstance(data, list):
|
| 312 |
+
max_data_rows = max(max_data_rows, len(data))
|
| 313 |
+
|
| 314 |
+
print(f" π Need to populate {max_data_rows} data rows")
|
| 315 |
+
|
| 316 |
+
# Process all required data rows
|
| 317 |
+
for data_row_index in range(max_data_rows):
|
| 318 |
+
table_row_idx = header_row_idx + 1 + data_row_index
|
| 319 |
+
|
| 320 |
+
# Check if this table row exists, if not, add it
|
| 321 |
+
if table_row_idx >= len(table.rows):
|
| 322 |
+
print(f" β οΈ Row {table_row_idx + 1} doesn't exist - table only has {len(table.rows)} rows")
|
| 323 |
+
print(f" β Adding new row for vehicle {data_row_index + 1}")
|
| 324 |
+
|
| 325 |
+
# Add a new row to the table
|
| 326 |
+
new_row = table.add_row()
|
| 327 |
+
print(f" β
Successfully added row {len(table.rows)} to the table")
|
| 328 |
+
|
| 329 |
+
row = table.rows[table_row_idx]
|
| 330 |
+
print(f" π Processing data row {table_row_idx + 1} (vehicle {data_row_index + 1})")
|
| 331 |
+
|
| 332 |
+
# Fill in data for each mapped column
|
| 333 |
+
for col_idx, json_key in column_mapping.items():
|
| 334 |
+
if col_idx < len(row.cells):
|
| 335 |
+
cell = row.cells[col_idx]
|
| 336 |
+
|
| 337 |
+
# Get the data for this column and row
|
| 338 |
+
column_data = vehicle_section.get(json_key, [])
|
| 339 |
+
if isinstance(column_data, list) and data_row_index < len(column_data):
|
| 340 |
+
replacement_value = str(column_data[data_row_index])
|
| 341 |
+
|
| 342 |
+
# Check if cell has red text or is empty (needs data)
|
| 343 |
+
cell_text = get_clean_text(cell)
|
| 344 |
+
if has_red_text(cell) or not cell_text.strip():
|
| 345 |
+
# If cell is empty, add the text directly
|
| 346 |
+
if not cell_text.strip():
|
| 347 |
+
cell.text = replacement_value
|
| 348 |
+
replacements_made += 1
|
| 349 |
+
print(f" -> Added '{replacement_value}' to empty cell (column '{json_key}')")
|
| 350 |
+
else:
|
| 351 |
+
# If cell has red text, replace it
|
| 352 |
+
cell_replacements = replace_red_text_in_cell(cell, replacement_value)
|
| 353 |
+
replacements_made += cell_replacements
|
| 354 |
+
if cell_replacements > 0:
|
| 355 |
+
print(f" -> Replaced red text with '{replacement_value}' (column '{json_key}')")
|
| 356 |
+
|
| 357 |
+
return replacements_made
|
| 358 |
+
|
| 359 |
+
def handle_print_accreditation_section(table, flat_json):
|
| 360 |
+
"""Handle the special case of print accreditation name with 2 values"""
|
| 361 |
+
replacements_made = 0
|
| 362 |
+
|
| 363 |
+
# Look for the print accreditation name data
|
| 364 |
+
print_data = flat_json.get("print accreditation name.print accreditation name", [])
|
| 365 |
+
if not isinstance(print_data, list) or len(print_data) < 2:
|
| 366 |
+
return 0
|
| 367 |
+
|
| 368 |
+
name_value = print_data[0] # "Simon Anderson"
|
| 369 |
+
position_value = print_data[1] # "Director"
|
| 370 |
+
|
| 371 |
+
print(f" π Print accreditation data: Name='{name_value}', Position='{position_value}'")
|
| 372 |
+
|
| 373 |
+
# Find rows with "Print Name" and "Position Title"
|
| 374 |
+
for row_idx, row in enumerate(table.rows):
|
| 375 |
+
if len(row.cells) >= 2:
|
| 376 |
+
# Check if this row has the headers
|
| 377 |
+
cell1_text = get_clean_text(row.cells[0]).lower()
|
| 378 |
+
cell2_text = get_clean_text(row.cells[1]).lower()
|
| 379 |
+
|
| 380 |
+
if "print name" in cell1_text and "position title" in cell2_text:
|
| 381 |
+
print(f" π Found header row {row_idx + 1}: '{cell1_text}' | '{cell2_text}'")
|
| 382 |
+
|
| 383 |
+
# Check the next row for red text to replace
|
| 384 |
+
if row_idx + 1 < len(table.rows):
|
| 385 |
+
data_row = table.rows[row_idx + 1]
|
| 386 |
+
if len(data_row.cells) >= 2:
|
| 387 |
+
# Replace Print Name (first cell)
|
| 388 |
+
if has_red_text(data_row.cells[0]):
|
| 389 |
+
cell_replacements = replace_red_text_in_cell(data_row.cells[0], name_value)
|
| 390 |
+
replacements_made += cell_replacements
|
| 391 |
+
if cell_replacements > 0:
|
| 392 |
+
print(f" β
Replaced Print Name: '{name_value}'")
|
| 393 |
+
|
| 394 |
+
# Replace Position Title (second cell)
|
| 395 |
+
if has_red_text(data_row.cells[1]):
|
| 396 |
+
cell_replacements = replace_red_text_in_cell(data_row.cells[1], position_value)
|
| 397 |
+
replacements_made += cell_replacements
|
| 398 |
+
if cell_replacements > 0:
|
| 399 |
+
print(f" β
Replaced Position Title: '{position_value}'")
|
| 400 |
+
|
| 401 |
+
break # Found the section, no need to continue
|
| 402 |
+
|
| 403 |
+
return replacements_made
|
| 404 |
+
|
| 405 |
+
def process_single_column_sections(cell, field_name, flat_json):
|
| 406 |
+
json_value = find_matching_json_value(field_name, flat_json)
|
| 407 |
+
if json_value is not None:
|
| 408 |
+
replacement_text = get_value_as_string(json_value, field_name)
|
| 409 |
+
if isinstance(json_value, list) and len(json_value) > 1:
|
| 410 |
+
replacement_text = "\n".join(str(item) for item in json_value)
|
| 411 |
+
if has_red_text(cell):
|
| 412 |
+
print(f" β
Replacing red text in single-column section: '{field_name}'")
|
| 413 |
+
print(f" β
Replacement text:\n{replacement_text}")
|
| 414 |
+
cell_replacements = replace_red_text_in_cell(cell, replacement_text)
|
| 415 |
+
if cell_replacements > 0:
|
| 416 |
+
print(f" -> Replaced with: '{replacement_text[:100]}...'")
|
| 417 |
+
return cell_replacements
|
| 418 |
+
return 0
|
| 419 |
+
|
| 420 |
+
def process_tables(document, flat_json):
|
| 421 |
+
"""Process tables to find key-value pairs and replace red values"""
|
| 422 |
+
replacements_made = 0
|
| 423 |
+
|
| 424 |
+
for table_idx, table in enumerate(document.tables):
|
| 425 |
+
print(f"\nπ Processing table {table_idx + 1}:")
|
| 426 |
+
|
| 427 |
+
# Check if this is the vehicle registration table
|
| 428 |
+
table_text = ""
|
| 429 |
+
for row in table.rows[:3]: # Check first 3 rows
|
| 430 |
+
for cell in row.cells:
|
| 431 |
+
table_text += get_clean_text(cell).lower() + " "
|
| 432 |
+
|
| 433 |
+
# Look for vehicle registration indicators (need multiple indicators to avoid false positives)
|
| 434 |
+
vehicle_indicators = ["registration number", "sub-contractor", "weight verification", "rfs suspension"]
|
| 435 |
+
indicator_count = sum(1 for indicator in vehicle_indicators if indicator in table_text)
|
| 436 |
+
if indicator_count >= 3: # Require at least 3 indicators to be sure it's a vehicle table
|
| 437 |
+
print(f" π Detected Vehicle Registration table")
|
| 438 |
+
vehicle_replacements = handle_vehicle_registration_table(table, flat_json)
|
| 439 |
+
replacements_made += vehicle_replacements
|
| 440 |
+
continue # Skip normal processing for this table
|
| 441 |
+
|
| 442 |
+
# Check if this is the print accreditation table
|
| 443 |
+
print_accreditation_indicators = ["print name", "position title"]
|
| 444 |
+
indicator_count = sum(1 for indicator in print_accreditation_indicators if indicator in table_text)
|
| 445 |
+
if indicator_count >= 2: # Require at least 2 indicators to be sure it's a print accreditation table
|
| 446 |
+
print(f" π Detected Print Accreditation table")
|
| 447 |
+
print_accreditation_replacements = handle_print_accreditation_section(table, flat_json)
|
| 448 |
+
replacements_made += print_accreditation_replacements
|
| 449 |
+
continue # Skip normal processing for this table
|
| 450 |
+
|
| 451 |
+
for row_idx, row in enumerate(table.rows):
|
| 452 |
+
if len(row.cells) < 1: # Skip empty rows
|
| 453 |
+
continue
|
| 454 |
+
|
| 455 |
+
# Get the key from the first column
|
| 456 |
+
key_cell = row.cells[0]
|
| 457 |
+
key_text = get_clean_text(key_cell)
|
| 458 |
+
|
| 459 |
+
if not key_text:
|
| 460 |
+
continue
|
| 461 |
+
|
| 462 |
+
print(f" π Row {row_idx + 1}: Key = '{key_text}'")
|
| 463 |
+
|
| 464 |
+
# Check if this key exists in our JSON
|
| 465 |
+
json_value = find_matching_json_value(key_text, flat_json)
|
| 466 |
+
|
| 467 |
+
if json_value is not None:
|
| 468 |
+
replacement_text = get_value_as_string(json_value, key_text)
|
| 469 |
+
|
| 470 |
+
# Special handling for Australian Company Number
|
| 471 |
+
if ("australian company number" in key_text.lower() or "company number" in key_text.lower()) and isinstance(json_value, list):
|
| 472 |
+
cell_replacements = handle_australian_company_number(row, json_value)
|
| 473 |
+
replacements_made += cell_replacements
|
| 474 |
+
|
| 475 |
+
# Handle section headers (like Attendance List, Nature of Business) where content is in next row
|
| 476 |
+
elif ("attendance list" in key_text.lower() or "nature of" in key_text.lower()) and row_idx + 1 < len(table.rows):
|
| 477 |
+
print(f" β
Section header detected, checking next row for content...")
|
| 478 |
+
next_row = table.rows[row_idx + 1]
|
| 479 |
+
|
| 480 |
+
# Check all cells in the next row for red text
|
| 481 |
+
for cell_idx, cell in enumerate(next_row.cells):
|
| 482 |
+
if has_red_text(cell):
|
| 483 |
+
print(f" β
Found red text in next row, cell {cell_idx + 1}")
|
| 484 |
+
# For list values, join with line breaks
|
| 485 |
+
if isinstance(json_value, list):
|
| 486 |
+
replacement_text = "\n".join(str(item) for item in json_value)
|
| 487 |
+
cell_replacements = replace_red_text_in_cell(cell, replacement_text)
|
| 488 |
+
replacements_made += cell_replacements
|
| 489 |
+
if cell_replacements > 0:
|
| 490 |
+
print(f" -> Replaced section content with: '{replacement_text[:100]}...'")
|
| 491 |
+
|
| 492 |
+
elif len(row.cells) == 1 or (len(row.cells) > 1 and not any(has_red_text(row.cells[i]) for i in range(1, len(row.cells)))):
|
| 493 |
+
if has_red_text(key_cell):
|
| 494 |
+
cell_replacements = process_single_column_sections(key_cell, key_text, flat_json)
|
| 495 |
+
replacements_made += cell_replacements
|
| 496 |
+
else:
|
| 497 |
+
for cell_idx in range(1, len(row.cells)):
|
| 498 |
+
value_cell = row.cells[cell_idx]
|
| 499 |
+
if has_red_text(value_cell):
|
| 500 |
+
print(f" β
Found red text in column {cell_idx + 1}")
|
| 501 |
+
cell_replacements = replace_red_text_in_cell(value_cell, replacement_text)
|
| 502 |
+
replacements_made += cell_replacements
|
| 503 |
+
else:
|
| 504 |
+
if len(row.cells) == 1 and has_red_text(key_cell):
|
| 505 |
+
red_text = ""
|
| 506 |
+
for paragraph in key_cell.paragraphs:
|
| 507 |
+
for run in paragraph.runs:
|
| 508 |
+
if is_red(run):
|
| 509 |
+
red_text += run.text
|
| 510 |
+
if red_text.strip():
|
| 511 |
+
section_value = find_matching_json_value(red_text.strip(), flat_json)
|
| 512 |
+
if section_value is not None:
|
| 513 |
+
section_replacement = get_value_as_string(section_value, red_text.strip())
|
| 514 |
+
cell_replacements = replace_red_text_in_cell(key_cell, section_replacement)
|
| 515 |
+
replacements_made += cell_replacements
|
| 516 |
+
|
| 517 |
+
# Handle tables where red text appears in multiple columns (like contact info tables)
|
| 518 |
+
for cell_idx in range(len(row.cells)):
|
| 519 |
+
cell = row.cells[cell_idx]
|
| 520 |
+
if has_red_text(cell):
|
| 521 |
+
# Get the red text from this cell
|
| 522 |
+
red_text = ""
|
| 523 |
+
for paragraph in cell.paragraphs:
|
| 524 |
+
for run in paragraph.runs:
|
| 525 |
+
if is_red(run):
|
| 526 |
+
red_text += run.text
|
| 527 |
+
|
| 528 |
+
if red_text.strip():
|
| 529 |
+
# Try to find a direct mapping for this red text
|
| 530 |
+
section_value = find_matching_json_value(red_text.strip(), flat_json)
|
| 531 |
+
if section_value is not None:
|
| 532 |
+
section_replacement = get_value_as_string(section_value, red_text.strip())
|
| 533 |
+
cell_replacements = replace_red_text_in_cell(cell, section_replacement)
|
| 534 |
+
replacements_made += cell_replacements
|
| 535 |
+
if cell_replacements > 0:
|
| 536 |
+
print(f" β
Replaced red text '{red_text.strip()[:30]}...' with '{section_replacement[:30]}...' in cell {cell_idx + 1}")
|
| 537 |
+
|
| 538 |
+
return replacements_made
|
| 539 |
+
|
| 540 |
+
def process_paragraphs(document, flat_json):
|
| 541 |
+
replacements_made = 0
|
| 542 |
+
print(f"\nπ Processing paragraphs:")
|
| 543 |
+
for para_idx, paragraph in enumerate(document.paragraphs):
|
| 544 |
+
red_runs = [run for run in paragraph.runs if is_red(run) and run.text.strip()]
|
| 545 |
+
if red_runs:
|
| 546 |
+
full_text = paragraph.text.strip()
|
| 547 |
+
red_text_only = "".join(run.text for run in red_runs).strip()
|
| 548 |
+
print(f" π Paragraph {para_idx + 1}: Found red text: '{red_text_only}'")
|
| 549 |
+
|
| 550 |
+
# Try to match the red text specifically first
|
| 551 |
+
json_value = find_matching_json_value(red_text_only, flat_json)
|
| 552 |
+
|
| 553 |
+
# If no match, try some common patterns
|
| 554 |
+
if json_value is None:
|
| 555 |
+
# Check for signature patterns
|
| 556 |
+
if "AUDITOR SIGNATURE" in red_text_only.upper() or "DATE" in red_text_only.upper():
|
| 557 |
+
json_value = find_matching_json_value("auditor signature", flat_json)
|
| 558 |
+
elif "OPERATOR SIGNATURE" in red_text_only.upper():
|
| 559 |
+
json_value = find_matching_json_value("operator signature", flat_json)
|
| 560 |
+
|
| 561 |
+
if json_value is not None:
|
| 562 |
+
replacement_text = get_value_as_string(json_value)
|
| 563 |
+
print(f" β
Replacing red text with: '{replacement_text}'")
|
| 564 |
+
red_runs[0].text = replacement_text
|
| 565 |
+
red_runs[0].font.color.rgb = RGBColor(0, 0, 0)
|
| 566 |
+
for run in red_runs[1:]:
|
| 567 |
+
run.text = ''
|
| 568 |
+
replacements_made += 1
|
| 569 |
+
return replacements_made
|
| 570 |
+
|
| 571 |
+
def main():
|
| 572 |
+
json_path = 'updated_word_data.json'
|
| 573 |
+
docx_path = 'test.docx'
|
| 574 |
+
output_path = 'updated_reportv1.docx'
|
| 575 |
+
|
| 576 |
+
try:
|
| 577 |
+
json_data = load_json(json_path)
|
| 578 |
+
flat_json = flatten_json(json_data)
|
| 579 |
+
print("π Available JSON keys (sample):")
|
| 580 |
+
count = 0
|
| 581 |
+
for key, value in sorted(flat_json.items()):
|
| 582 |
+
if count < 10:
|
| 583 |
+
print(f" - {key}: {value}")
|
| 584 |
+
count += 1
|
| 585 |
+
print(f" ... and {len(flat_json) - count} more keys\n")
|
| 586 |
+
|
| 587 |
+
doc = Document(docx_path)
|
| 588 |
+
|
| 589 |
+
table_replacements = process_tables(doc, flat_json)
|
| 590 |
+
paragraph_replacements = process_paragraphs(doc, flat_json)
|
| 591 |
+
total_replacements = table_replacements + paragraph_replacements
|
| 592 |
+
|
| 593 |
+
doc.save(output_path)
|
| 594 |
+
print(f"\nβ
Document saved as: {output_path}")
|
| 595 |
+
print(f"β
Total replacements: {total_replacements} ({table_replacements} in tables, {paragraph_replacements} in paragraphs)")
|
| 596 |
+
|
| 597 |
+
except FileNotFoundError as e:
|
| 598 |
+
print(f"β File not found: {e}")
|
| 599 |
+
except Exception as e:
|
| 600 |
+
print(f"β Error: {e}")
|
| 601 |
+
import traceback
|
| 602 |
+
traceback.print_exc()
|
| 603 |
+
|
| 604 |
+
if __name__ == "__main__":
|
| 605 |
+
main()
|