Spaces:
Running
Running
Update extract_red_text.py
Browse files- extract_red_text.py +356 -328
extract_red_text.py
CHANGED
|
@@ -1,365 +1,357 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
extract_red_text.py
|
| 4 |
-
Hardened version: preserves original logic/prints while improving header-label mapping,
|
| 5 |
-
robustness to missing hf_utils and better synonym handling for vehicle tables.
|
| 6 |
"""
|
| 7 |
-
|
| 8 |
import re
|
| 9 |
import json
|
| 10 |
import sys
|
|
|
|
| 11 |
from docx import Document
|
| 12 |
from docx.oxml.ns import qn
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
s = re.sub(r"\s+", " ", s).strip()
|
| 30 |
-
return s
|
| 31 |
-
|
| 32 |
-
def normalize_header_text(s: str) -> str:
|
| 33 |
-
return normalize_text(s).upper()
|
| 34 |
-
|
| 35 |
-
def is_red_font(run):
|
| 36 |
-
"""Best-effort red detection fallback for when hf_utils isn't available."""
|
| 37 |
-
try:
|
| 38 |
-
col = getattr(run.font, "color", None)
|
| 39 |
-
if col and getattr(col, "rgb", None):
|
| 40 |
-
rgb = col.rgb
|
| 41 |
-
r, g, b = rgb[0], rgb[1], rgb[2]
|
| 42 |
-
if r > 150 and g < 120 and b < 120 and (r - max(g, b)) > 30:
|
| 43 |
-
return True
|
| 44 |
-
except Exception:
|
| 45 |
-
pass
|
| 46 |
-
# fallback to xml check
|
| 47 |
-
try:
|
| 48 |
-
rPr = getattr(run._element, "rPr", None)
|
| 49 |
-
if rPr is not None:
|
| 50 |
-
clr = rPr.find(qn('w:color'))
|
| 51 |
-
if clr is not None:
|
| 52 |
-
val = clr.get(qn('w:val'))
|
| 53 |
-
if val and re.fullmatch(r"[0-9A-Fa-f]{6}", val):
|
| 54 |
-
rr, gg, bb = int(val[:2], 16), int(val[2:4], 16), int(val[4:], 16)
|
| 55 |
-
if rr > 150 and gg < 120 and bb < 120 and (rr - max(gg, bb)) > 30:
|
| 56 |
-
return True
|
| 57 |
-
except Exception:
|
| 58 |
-
pass
|
| 59 |
return False
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
-
# Import master schemas and patterns (your file)
|
| 65 |
-
from master_key import TABLE_SCHEMAS, HEADING_PATTERNS, PARAGRAPH_PATTERNS
|
| 66 |
|
| 67 |
-
# ---------------------------------------------------------------------
|
| 68 |
-
# Low-level helpers (kept and hardened)
|
| 69 |
-
# ---------------------------------------------------------------------
|
| 70 |
def _prev_para_text(tbl):
|
| 71 |
-
"""
|
| 72 |
prev = tbl._tbl.getprevious()
|
| 73 |
while prev is not None and not prev.tag.endswith("}p"):
|
| 74 |
prev = prev.getprevious()
|
| 75 |
if prev is None:
|
| 76 |
return ""
|
|
|
|
| 77 |
return "".join(node.text for node in prev.iter() if node.tag.endswith("}t") and node.text).strip()
|
| 78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
def get_table_context(tbl):
|
| 80 |
-
"""Return
|
| 81 |
heading = normalize_text(_prev_para_text(tbl))
|
| 82 |
-
headers = [
|
|
|
|
|
|
|
|
|
|
| 83 |
col0 = [normalize_text(r.cells[0].text) for r in tbl.rows if r.cells and r.cells[0].text.strip()]
|
| 84 |
first_cell = normalize_text(tbl.rows[0].cells[0].text) if tbl.rows else ""
|
| 85 |
all_cells = []
|
| 86 |
for row in tbl.rows:
|
| 87 |
for cell in row.cells:
|
| 88 |
-
|
| 89 |
-
if
|
| 90 |
-
all_cells.append(
|
| 91 |
return {
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
}
|
| 100 |
|
| 101 |
-
def fuzzy_match_heading(heading, patterns):
|
| 102 |
-
"""Return True if heading fuzzy-matches any regex patterns"""
|
| 103 |
-
if not heading:
|
| 104 |
-
return False
|
| 105 |
-
heading_norm = heading.upper()
|
| 106 |
-
for pattern in patterns:
|
| 107 |
-
try:
|
| 108 |
-
if re.search(pattern, heading_norm, re.IGNORECASE):
|
| 109 |
-
return True
|
| 110 |
-
except re.error:
|
| 111 |
-
if pattern.upper() in heading_norm:
|
| 112 |
-
return True
|
| 113 |
-
return False
|
| 114 |
|
| 115 |
-
|
| 116 |
-
# Header-to-label synonym map: improved coverage for common OCR/header variants
|
| 117 |
-
# ---------------------------------------------------------------------
|
| 118 |
-
HEADER_SYNONYMS = {
|
| 119 |
-
# normalized header (upper) -> canonical label in TABLE_SCHEMAS
|
| 120 |
-
"NO": "No.",
|
| 121 |
-
"NO.": "No.",
|
| 122 |
-
"REG NO": "Registration Number",
|
| 123 |
-
"REGISTRATIONNO": "Registration Number",
|
| 124 |
-
"REGISTRATION NUMBER": "Registration Number",
|
| 125 |
-
"REGISTRATION": "Registration Number",
|
| 126 |
-
"PRINT NAME": "Print Name",
|
| 127 |
-
"NHVR OR EXEMPLAR GLOBAL AUDITOR REGISTRATION NUMBER": "NHVR or Exemplar Global Auditor Registration Number",
|
| 128 |
-
"ROADWORTHINESS CERTIFICATES": "Roadworthiness Certificates",
|
| 129 |
-
"ROADWORTHINESS CERTIFICATES (APPLICABLE FOR ENTRY AUDIT)": "Roadworthiness Certificates",
|
| 130 |
-
"MAINTENANCE RECORDS": "Maintenance Records",
|
| 131 |
-
"DAILY CHECKS": "Daily Checks",
|
| 132 |
-
"FAULT RECORDING/ REPORTING": "Fault Recording/ Reporting",
|
| 133 |
-
"FAULT RECORDING/REPORTING": "Fault Recording/ Reporting",
|
| 134 |
-
"FAULT REPAIR": "Fault Repair",
|
| 135 |
-
"WEIGHT VERIFICATION RECORDS": "Weight Verification Records",
|
| 136 |
-
"RFS SUSPENSION CERTIFICATION #": "RFS Suspension Certification #",
|
| 137 |
-
"SUSPENSION SYSTEM MAINTENANCE": "Suspension System Maintenance",
|
| 138 |
-
"TRIP RECORDS": "Trip Records",
|
| 139 |
-
"FAULT RECORDING/ REPORTING ON SUSPENSION SYSTEM": "Fault Recording/ Reporting",
|
| 140 |
-
# short forms
|
| 141 |
-
"REG NO.": "Registration Number",
|
| 142 |
-
"REGISTRATION #": "Registration Number",
|
| 143 |
-
}
|
| 144 |
-
|
| 145 |
-
def map_header_to_label(header_text, labels):
|
| 146 |
"""
|
| 147 |
-
|
| 148 |
-
|
| 149 |
"""
|
| 150 |
-
if not header_text:
|
| 151 |
-
return None
|
| 152 |
-
hnorm = normalize_header_text(header_text)
|
| 153 |
-
# exact synonym map
|
| 154 |
-
for key, lab in HEADER_SYNONYMS.items():
|
| 155 |
-
if key in hnorm:
|
| 156 |
-
# ensure lab exists in candidate labels (case-insensitive)
|
| 157 |
-
for cand in labels:
|
| 158 |
-
if normalize_header_text(cand) == normalize_header_text(lab):
|
| 159 |
-
return cand
|
| 160 |
-
# if it isn't in labels, still return the lab (labels sometimes omit punctuation)
|
| 161 |
-
return lab
|
| 162 |
-
|
| 163 |
-
# try exact match to any candidate label
|
| 164 |
-
for cand in labels:
|
| 165 |
-
if normalize_header_text(cand) == hnorm:
|
| 166 |
-
return cand
|
| 167 |
-
|
| 168 |
-
# token overlap scoring (flexible)
|
| 169 |
-
header_words = [w for w in re.split(r"\W+", header_text) if len(w) > 2]
|
| 170 |
-
best = (None, 0.0)
|
| 171 |
-
for cand in labels:
|
| 172 |
-
cand_words = [w for w in re.split(r"\W+", cand) if len(w) > 2]
|
| 173 |
-
if not cand_words or not header_words:
|
| 174 |
-
continue
|
| 175 |
-
common = set(w.upper() for w in header_words).intersection(set(w.upper() for w in cand_words))
|
| 176 |
-
score = len(common) / max(1, max(len(header_words), len(cand_words)))
|
| 177 |
-
if score > best[1]:
|
| 178 |
-
best = (cand, score)
|
| 179 |
-
# lower threshold for vehicle tables / noisy OCR (accept >= 0.25)
|
| 180 |
-
if best[1] >= 0.25:
|
| 181 |
-
return best[0]
|
| 182 |
-
return None
|
| 183 |
-
|
| 184 |
-
# ---------------------------------------------------------------------
|
| 185 |
-
# Matching / scoring logic (keeps original heuristics)
|
| 186 |
-
# ---------------------------------------------------------------------
|
| 187 |
-
def calculate_schema_match_score(schema_name, spec, context):
|
| 188 |
score = 0
|
| 189 |
reasons = []
|
| 190 |
|
| 191 |
-
|
|
|
|
|
|
|
| 192 |
if "Vehicle Registration" in schema_name:
|
| 193 |
-
vehicle_keywords = ["registration", "vehicle", "sub-contractor", "weight verification", "rfs suspension"]
|
| 194 |
-
|
| 195 |
-
keyword_matches = sum(1 for k in vehicle_keywords if k in table_text)
|
| 196 |
if keyword_matches >= 2:
|
| 197 |
score += 150
|
| 198 |
-
reasons.append(f"Vehicle
|
| 199 |
elif keyword_matches >= 1:
|
| 200 |
score += 75
|
| 201 |
-
reasons.append(f"Some
|
| 202 |
|
| 203 |
-
# Summary boost
|
| 204 |
-
if "Summary" in schema_name and "details" in
|
| 205 |
score += 100
|
| 206 |
-
reasons.append("Summary
|
| 207 |
-
if "Summary" not in schema_name and "details" in " ".join(context["headers"]).lower():
|
| 208 |
-
score -= 75
|
| 209 |
-
reasons.append("Non-summary schema penalized for DETAILS column presence")
|
| 210 |
-
|
| 211 |
-
# context exclusions & keywords
|
| 212 |
-
if spec.get("context_exclusions"):
|
| 213 |
-
table_text = " ".join(context["headers"]).lower() + " " + context["heading"].lower()
|
| 214 |
-
for exc in spec["context_exclusions"]:
|
| 215 |
-
if exc.lower() in table_text:
|
| 216 |
-
score -= 50
|
| 217 |
-
reasons.append(f"Context exclusion penalty: '{exc}'")
|
| 218 |
|
| 219 |
-
if
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
if matches:
|
| 223 |
-
score += matches * 15
|
| 224 |
-
reasons.append(f"Context keyword matches: {matches}/{len(spec['context_keywords'])}")
|
| 225 |
|
| 226 |
-
#
|
| 227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
score += 100
|
| 229 |
-
reasons.append(
|
| 230 |
|
| 231 |
-
#
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
else:
|
| 237 |
-
text = h
|
| 238 |
-
if fuzzy_match_heading(context["heading"], [text]):
|
| 239 |
score += 50
|
| 240 |
-
reasons.append(f"Heading
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
break
|
| 242 |
|
| 243 |
-
#
|
| 244 |
if spec.get("columns"):
|
| 245 |
cols = [normalize_text(c) for c in spec["columns"]]
|
| 246 |
matches = 0
|
| 247 |
for col in cols:
|
| 248 |
-
if any(col.upper() in h.upper() for h in context[
|
| 249 |
matches += 1
|
| 250 |
if matches == len(cols):
|
| 251 |
score += 60
|
| 252 |
-
reasons.append(
|
| 253 |
elif matches > 0:
|
| 254 |
score += matches * 20
|
| 255 |
reasons.append(f"Partial column matches: {matches}/{len(cols)}")
|
| 256 |
|
| 257 |
-
# left
|
| 258 |
if spec.get("orientation") == "left":
|
| 259 |
labels = [normalize_text(lbl) for lbl in spec.get("labels", [])]
|
| 260 |
matches = 0
|
| 261 |
for lbl in labels:
|
| 262 |
-
if any(lbl.upper() in c.upper() or c.upper() in lbl.upper() for c in context[
|
| 263 |
matches += 1
|
| 264 |
if matches > 0:
|
| 265 |
score += (matches / max(1, len(labels))) * 30
|
| 266 |
-
reasons.append(f"Left
|
| 267 |
|
| 268 |
-
#
|
| 269 |
elif spec.get("orientation") == "row1":
|
| 270 |
labels = [normalize_text(lbl) for lbl in spec.get("labels", [])]
|
| 271 |
-
matches = 0
|
|
|
|
| 272 |
for lbl in labels:
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
matches += 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
if matches > 0:
|
| 278 |
-
score += (matches / max(1, len(labels))) * 40
|
| 279 |
-
reasons.append(f"Row1
|
| 280 |
-
|
| 281 |
-
#
|
| 282 |
-
if schema_name == "Operator Declaration"
|
| 283 |
-
if
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
|
| 295 |
return score, reasons
|
| 296 |
|
|
|
|
| 297 |
def match_table_schema(tbl):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 298 |
context = get_table_context(tbl)
|
| 299 |
best_match = None
|
| 300 |
-
best_score =
|
| 301 |
for name, spec in TABLE_SCHEMAS.items():
|
| 302 |
-
|
|
|
|
|
|
|
|
|
|
| 303 |
if score > best_score:
|
| 304 |
best_score = score
|
| 305 |
best_match = name
|
|
|
|
| 306 |
if best_score >= 20:
|
| 307 |
return best_match
|
| 308 |
return None
|
| 309 |
|
| 310 |
-
|
| 311 |
-
# Multi-schema detection & extraction (keeps original behavior)
|
| 312 |
-
# ---------------------------------------------------------------------
|
| 313 |
def check_multi_schema_table(tbl):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
context = get_table_context(tbl)
|
| 315 |
-
operator_labels = [
|
| 316 |
-
|
| 317 |
-
"Australian Company Number", "NHVAS Manual"
|
| 318 |
-
]
|
| 319 |
contact_labels = ["Operator business address", "Operator Postal address", "Email address", "Operator Telephone Number"]
|
| 320 |
-
has_operator = any(any(op_lbl.upper() in cell.upper() for op_lbl in operator_labels) for cell in context[
|
| 321 |
-
has_contact = any(any(cont_lbl.upper() in cell.upper() for cont_lbl in contact_labels) for cell in context[
|
| 322 |
if has_operator and has_contact:
|
| 323 |
return ["Operator Information", "Operator contact details"]
|
| 324 |
return None
|
| 325 |
|
|
|
|
| 326 |
def extract_multi_schema_table(tbl, schemas):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 327 |
result = {}
|
| 328 |
for schema_name in schemas:
|
| 329 |
if schema_name not in TABLE_SCHEMAS:
|
| 330 |
continue
|
| 331 |
spec = TABLE_SCHEMAS[schema_name]
|
| 332 |
schema_data = {}
|
|
|
|
| 333 |
for ri, row in enumerate(tbl.rows):
|
| 334 |
-
if
|
| 335 |
continue
|
| 336 |
row_label = normalize_text(row.cells[0].text)
|
| 337 |
-
|
| 338 |
matched_label = None
|
| 339 |
for spec_label in spec.get("labels", []):
|
| 340 |
spec_norm = normalize_text(spec_label).upper()
|
| 341 |
row_norm = row_label.upper()
|
| 342 |
if spec_norm == row_norm or spec_norm in row_norm or row_norm in spec_norm:
|
| 343 |
-
|
| 344 |
matched_label = spec_label
|
| 345 |
break
|
| 346 |
-
if not
|
| 347 |
continue
|
| 348 |
-
|
|
|
|
| 349 |
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
|
| 350 |
if red_txt:
|
| 351 |
-
schema_data.setdefault(matched_label, [])
|
| 352 |
-
if red_txt not in schema_data[matched_label]:
|
| 353 |
-
schema_data[matched_label].append(red_txt)
|
| 354 |
if schema_data:
|
| 355 |
result[schema_name] = schema_data
|
| 356 |
return result
|
| 357 |
|
| 358 |
-
|
| 359 |
-
# Extraction: special-case for Vehicle Registration tables (row1) and generic fallback
|
| 360 |
-
# ---------------------------------------------------------------------
|
| 361 |
def extract_table_data(tbl, schema_name, spec):
|
| 362 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 363 |
if "Vehicle Registration" in schema_name:
|
| 364 |
print(f" 🚗 EXTRACTION FIX: Processing Vehicle Registration table")
|
| 365 |
labels = spec.get("labels", [])
|
|
@@ -367,12 +359,11 @@ def extract_table_data(tbl, schema_name, spec):
|
|
| 367 |
seen = {lbl: set() for lbl in labels}
|
| 368 |
|
| 369 |
if len(tbl.rows) < 2:
|
| 370 |
-
print(" ❌ Vehicle table has less than 2 rows")
|
| 371 |
return {}
|
| 372 |
|
| 373 |
header_row = tbl.rows[0]
|
| 374 |
column_mapping = {}
|
| 375 |
-
|
| 376 |
print(f" 📋 Mapping {len(header_row.cells)} header cells to labels")
|
| 377 |
|
| 378 |
for col_idx, cell in enumerate(header_row.cells):
|
|
@@ -380,56 +371,62 @@ def extract_table_data(tbl, schema_name, spec):
|
|
| 380 |
if not header_text:
|
| 381 |
continue
|
| 382 |
print(f" Column {col_idx}: '{header_text}'")
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 393 |
else:
|
| 394 |
-
#
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
if not cwords or not hwords:
|
| 401 |
-
continue
|
| 402 |
-
common = set(w.upper() for w in hwords).intersection(set(w.upper() for w in cwords))
|
| 403 |
-
score = len(common) / max(1, max(len(hwords), len(cwords)))
|
| 404 |
-
if score > best_score:
|
| 405 |
-
best = cand
|
| 406 |
-
best_score = score
|
| 407 |
-
if best and best_score >= 0.25:
|
| 408 |
-
column_mapping[col_idx] = best
|
| 409 |
-
print(f" ✅ Fuzzy-mapped to: '{best}' (score: {best_score:.2f})")
|
| 410 |
else:
|
| 411 |
print(f" ⚠️ No mapping found for '{header_text}'")
|
| 412 |
|
| 413 |
print(f" 📊 Total column mappings: {len(column_mapping)}")
|
| 414 |
|
| 415 |
-
# Extract
|
| 416 |
for row_idx in range(1, len(tbl.rows)):
|
| 417 |
row = tbl.rows[row_idx]
|
| 418 |
print(f" 📌 Processing data row {row_idx}")
|
| 419 |
for col_idx, cell in enumerate(row.cells):
|
| 420 |
-
if col_idx in column_mapping:
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
|
|
|
|
|
|
| 428 |
result = {k: v for k, v in collected.items() if v}
|
| 429 |
print(f" ✅ Vehicle Registration extracted: {len(result)} columns with data")
|
| 430 |
return result
|
| 431 |
|
| 432 |
-
# Generic
|
| 433 |
labels = spec.get("labels", []) + [schema_name]
|
| 434 |
collected = {lbl: [] for lbl in labels}
|
| 435 |
seen = {lbl: set() for lbl in labels}
|
|
@@ -442,12 +439,15 @@ def extract_table_data(tbl, schema_name, spec):
|
|
| 442 |
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
|
| 443 |
if not red_txt:
|
| 444 |
continue
|
|
|
|
| 445 |
if by_col:
|
|
|
|
| 446 |
if ci < len(spec.get("labels", [])):
|
| 447 |
lbl = spec["labels"][ci]
|
| 448 |
else:
|
| 449 |
lbl = schema_name
|
| 450 |
else:
|
|
|
|
| 451 |
raw_label = normalize_text(row.cells[0].text)
|
| 452 |
lbl = None
|
| 453 |
for spec_label in spec.get("labels", []):
|
|
@@ -463,112 +463,140 @@ def extract_table_data(tbl, schema_name, spec):
|
|
| 463 |
break
|
| 464 |
if not lbl:
|
| 465 |
lbl = schema_name
|
| 466 |
-
|
|
|
|
| 467 |
seen[lbl].add(red_txt)
|
| 468 |
-
collected
|
|
|
|
| 469 |
return {k: v for k, v in collected.items() if v}
|
| 470 |
|
| 471 |
-
|
| 472 |
-
# Main extraction: process all tables then paragraphs
|
| 473 |
-
# ---------------------------------------------------------------------
|
| 474 |
def extract_red_text(input_doc):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 475 |
if isinstance(input_doc, str):
|
| 476 |
doc = Document(input_doc)
|
| 477 |
else:
|
| 478 |
doc = input_doc
|
|
|
|
| 479 |
out = {}
|
| 480 |
table_count = 0
|
| 481 |
|
| 482 |
for tbl in doc.tables:
|
| 483 |
table_count += 1
|
|
|
|
| 484 |
multi_schemas = check_multi_schema_table(tbl)
|
| 485 |
if multi_schemas:
|
| 486 |
multi_data = extract_multi_schema_table(tbl, multi_schemas)
|
| 487 |
for schema_name, schema_data in multi_data.items():
|
| 488 |
if schema_data:
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
if val not in existing[k]:
|
| 495 |
-
existing[k].append(val)
|
| 496 |
-
out[schema_name] = existing
|
| 497 |
continue
|
| 498 |
|
|
|
|
| 499 |
schema = match_table_schema(tbl)
|
| 500 |
if not schema:
|
|
|
|
| 501 |
continue
|
| 502 |
-
spec = TABLE_SCHEMAS
|
| 503 |
data = extract_table_data(tbl, schema, spec)
|
| 504 |
if data:
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
# Paragraph red-text extraction with context
|
| 514 |
paras = {}
|
| 515 |
for idx, para in enumerate(doc.paragraphs):
|
| 516 |
red_txt = "".join(r.text for r in para.runs if is_red_font(r)).strip()
|
| 517 |
if not red_txt:
|
| 518 |
continue
|
| 519 |
|
| 520 |
-
# find
|
| 521 |
context = None
|
| 522 |
for j in range(idx - 1, -1, -1):
|
| 523 |
txt = normalize_text(doc.paragraphs[j].text)
|
| 524 |
-
if txt:
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
|
|
|
| 529 |
|
| 530 |
-
#
|
| 531 |
-
if not context and re.fullmatch(PARAGRAPH_PATTERNS.get("date_line", r"
|
| 532 |
context = "Date"
|
| 533 |
|
| 534 |
if not context:
|
| 535 |
context = "(para)"
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
paras[context].append(red_txt)
|
| 539 |
|
| 540 |
if paras:
|
| 541 |
out["paragraphs"] = paras
|
|
|
|
| 542 |
return out
|
| 543 |
|
| 544 |
-
|
| 545 |
-
# File wrapper to support your existing calls
|
| 546 |
-
# ---------------------------------------------------------------------
|
| 547 |
def extract_red_text_filelike(input_file, output_file):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 548 |
if hasattr(input_file, "seek"):
|
| 549 |
-
|
| 550 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 551 |
result = extract_red_text(doc)
|
|
|
|
|
|
|
| 552 |
if hasattr(output_file, "write"):
|
| 553 |
json.dump(result, output_file, indent=2, ensure_ascii=False)
|
| 554 |
-
|
|
|
|
|
|
|
|
|
|
| 555 |
else:
|
| 556 |
with open(output_file, "w", encoding="utf-8") as f:
|
| 557 |
json.dump(result, f, indent=2, ensure_ascii=False)
|
|
|
|
| 558 |
return result
|
| 559 |
|
| 560 |
-
|
| 561 |
-
# CLI entrypoint (same as before)
|
| 562 |
-
# ---------------------------------------------------------------------
|
| 563 |
if __name__ == "__main__":
|
|
|
|
| 564 |
if len(sys.argv) == 3:
|
| 565 |
input_docx = sys.argv[1]
|
| 566 |
output_json = sys.argv[2]
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
|
|
|
|
|
|
|
|
|
| 573 |
else:
|
| 574 |
print("To use as a module: extract_red_text_filelike(input_file, output_file)")
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
extract_red_text.py
|
|
|
|
|
|
|
| 4 |
"""
|
|
|
|
| 5 |
import re
|
| 6 |
import json
|
| 7 |
import sys
|
| 8 |
+
from io import BytesIO
|
| 9 |
from docx import Document
|
| 10 |
from docx.oxml.ns import qn
|
| 11 |
|
| 12 |
+
# Import schema constants (TABLE_SCHEMAS, HEADING_PATTERNS, PARAGRAPH_PATTERNS, GLOBAL_SETTINGS)
|
| 13 |
+
# Ensure master_key.py is present in same dir / importable path
|
| 14 |
+
from master_key import TABLE_SCHEMAS, HEADING_PATTERNS, PARAGRAPH_PATTERNS, GLOBAL_SETTINGS
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def is_red_font(run):
|
| 18 |
+
"""
|
| 19 |
+
Robust detection of 'red' font in a run.
|
| 20 |
+
Tries several sources:
|
| 21 |
+
- python-docx run.font.color.rgb (safe-guarded)
|
| 22 |
+
- raw XML rPr/w:color value (hex)
|
| 23 |
+
Returns True if color appears predominantly red.
|
| 24 |
+
"""
|
| 25 |
+
# Quick guard
|
| 26 |
+
if run is None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
return False
|
| 28 |
|
| 29 |
+
# 1) Try docx high-level color API if available
|
| 30 |
+
try:
|
| 31 |
+
col = getattr(run.font, "color", None)
|
| 32 |
+
if col is not None:
|
| 33 |
+
rgb_val = getattr(col, "rgb", None)
|
| 34 |
+
if rgb_val:
|
| 35 |
+
# rgb_val might be an RGBColor object or a tuple/list or hex-string
|
| 36 |
+
try:
|
| 37 |
+
# If it's sequence-like (tuple/list) with 3 ints
|
| 38 |
+
if isinstance(rgb_val, (tuple, list)) and len(rgb_val) == 3:
|
| 39 |
+
rr, gg, bb = rgb_val
|
| 40 |
+
else:
|
| 41 |
+
# Try string representation like 'FF0000' or 'ff0000'
|
| 42 |
+
hexstr = str(rgb_val).strip()
|
| 43 |
+
if re.fullmatch(r"[0-9A-Fa-f]{6}", hexstr):
|
| 44 |
+
rr, gg, bb = int(hexstr[0:2], 16), int(hexstr[2:4], 16), int(hexstr[4:6], 16)
|
| 45 |
+
else:
|
| 46 |
+
# unknown format - fall through to XML check
|
| 47 |
+
rr = gg = bb = None
|
| 48 |
+
if rr is not None:
|
| 49 |
+
# Heuristic thresholds for 'red-ish'
|
| 50 |
+
if rr > 150 and gg < 120 and bb < 120 and (rr - gg) > 30 and (rr - bb) > 30:
|
| 51 |
+
return True
|
| 52 |
+
except Exception:
|
| 53 |
+
# fall back to rPr introspection below
|
| 54 |
+
pass
|
| 55 |
+
except Exception:
|
| 56 |
+
# ignore and continue to XML method
|
| 57 |
+
pass
|
| 58 |
+
|
| 59 |
+
# 2) Inspect raw XML run properties for <w:color w:val="RRGGBB" />
|
| 60 |
+
try:
|
| 61 |
+
rPr = getattr(run._element, "rPr", None)
|
| 62 |
+
if rPr is not None:
|
| 63 |
+
clr = rPr.find(qn('w:color'))
|
| 64 |
+
if clr is not None:
|
| 65 |
+
val = clr.get(qn('w:val')) or clr.get('w:val') or clr.get('val')
|
| 66 |
+
if val and isinstance(val, str):
|
| 67 |
+
val = val.strip()
|
| 68 |
+
# sometimes color is provided as 'FF0000' hex or shorthand
|
| 69 |
+
if re.fullmatch(r"[0-9A-Fa-f]{6}", val):
|
| 70 |
+
rr, gg, bb = int(val[0:2], 16), int(val[2:4], 16), int(val[4:6], 16)
|
| 71 |
+
if rr > 150 and gg < 120 and bb < 120 and (rr - gg) > 30 and (rr - bb) > 30:
|
| 72 |
+
return True
|
| 73 |
+
except Exception:
|
| 74 |
+
pass
|
| 75 |
+
|
| 76 |
+
return False
|
| 77 |
|
|
|
|
|
|
|
| 78 |
|
|
|
|
|
|
|
|
|
|
| 79 |
def _prev_para_text(tbl):
|
| 80 |
+
"""Return text of previous paragraph node before a given table element."""
|
| 81 |
prev = tbl._tbl.getprevious()
|
| 82 |
while prev is not None and not prev.tag.endswith("}p"):
|
| 83 |
prev = prev.getprevious()
|
| 84 |
if prev is None:
|
| 85 |
return ""
|
| 86 |
+
# gather all text nodes under the paragraph element
|
| 87 |
return "".join(node.text for node in prev.iter() if node.tag.endswith("}t") and node.text).strip()
|
| 88 |
|
| 89 |
+
|
| 90 |
+
def normalize_text(text):
|
| 91 |
+
"""Normalize text for more reliable matching (collapse whitespace)."""
|
| 92 |
+
if text is None:
|
| 93 |
+
return ""
|
| 94 |
+
return re.sub(r'\s+', ' ', text.strip())
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def fuzzy_match_heading(heading, patterns):
|
| 98 |
+
"""
|
| 99 |
+
Attempt fuzzy matching of heading against regex patterns.
|
| 100 |
+
patterns is a list of pattern dicts or strings.
|
| 101 |
+
"""
|
| 102 |
+
heading_norm = normalize_text(heading.upper())
|
| 103 |
+
for p in patterns:
|
| 104 |
+
if isinstance(p, dict):
|
| 105 |
+
pat = p.get("text", "")
|
| 106 |
+
else:
|
| 107 |
+
pat = p
|
| 108 |
+
try:
|
| 109 |
+
if re.search(pat, heading_norm, re.IGNORECASE):
|
| 110 |
+
return True
|
| 111 |
+
except re.error:
|
| 112 |
+
# treat as plain substring fallback
|
| 113 |
+
if pat and pat.upper() in heading_norm:
|
| 114 |
+
return True
|
| 115 |
+
return False
|
| 116 |
+
|
| 117 |
+
|
| 118 |
def get_table_context(tbl):
|
| 119 |
+
"""Return context metadata for a table to aid schema matching."""
|
| 120 |
heading = normalize_text(_prev_para_text(tbl))
|
| 121 |
+
headers = []
|
| 122 |
+
if tbl.rows:
|
| 123 |
+
# collect header text of first row, keeping cell order
|
| 124 |
+
headers = [normalize_text(c.text) for c in tbl.rows[0].cells]
|
| 125 |
col0 = [normalize_text(r.cells[0].text) for r in tbl.rows if r.cells and r.cells[0].text.strip()]
|
| 126 |
first_cell = normalize_text(tbl.rows[0].cells[0].text) if tbl.rows else ""
|
| 127 |
all_cells = []
|
| 128 |
for row in tbl.rows:
|
| 129 |
for cell in row.cells:
|
| 130 |
+
text = normalize_text(cell.text)
|
| 131 |
+
if text:
|
| 132 |
+
all_cells.append(text)
|
| 133 |
return {
|
| 134 |
+
'heading': heading,
|
| 135 |
+
'headers': headers,
|
| 136 |
+
'col0': col0,
|
| 137 |
+
'first_cell': first_cell,
|
| 138 |
+
'all_cells': all_cells,
|
| 139 |
+
'num_rows': len(tbl.rows),
|
| 140 |
+
'num_cols': len(tbl.rows[0].cells) if tbl.rows else 0
|
| 141 |
}
|
| 142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
+
def calculate_schema_match_score(schema_name, spec, context):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
"""
|
| 146 |
+
Return (score, reasons[]) for how well a table context matches a schema.
|
| 147 |
+
Heuristic-based scoring; vehicle registration and 'DETAILS' summary boosts added.
|
| 148 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
score = 0
|
| 150 |
reasons = []
|
| 151 |
|
| 152 |
+
table_text = " ".join(context.get('headers', [])).lower() + " " + context.get('heading', "").lower()
|
| 153 |
+
|
| 154 |
+
# Vehicle Registration specific boost
|
| 155 |
if "Vehicle Registration" in schema_name:
|
| 156 |
+
vehicle_keywords = ["registration", "vehicle", "sub-contractor", "weight verification", "rfs suspension", "roadworthiness"]
|
| 157 |
+
keyword_matches = sum(1 for kw in vehicle_keywords if kw in table_text)
|
|
|
|
| 158 |
if keyword_matches >= 2:
|
| 159 |
score += 150
|
| 160 |
+
reasons.append(f"Vehicle keywords matched: {keyword_matches}")
|
| 161 |
elif keyword_matches >= 1:
|
| 162 |
score += 75
|
| 163 |
+
reasons.append(f"Some vehicle keywords matched: {keyword_matches}")
|
| 164 |
|
| 165 |
+
# Summary DETAILS boost
|
| 166 |
+
if "Summary" in schema_name and "details" in table_text:
|
| 167 |
score += 100
|
| 168 |
+
reasons.append("Summary with DETAILS found")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
+
if "Summary" not in schema_name and "details" in table_text:
|
| 171 |
+
score -= 75
|
| 172 |
+
reasons.append("Non-summary schema penalized due to DETAILS column presence")
|
|
|
|
|
|
|
|
|
|
| 173 |
|
| 174 |
+
# Context exclusions
|
| 175 |
+
for exclusion in spec.get("context_exclusions", []):
|
| 176 |
+
if exclusion.lower() in table_text:
|
| 177 |
+
score -= 50
|
| 178 |
+
reasons.append(f"Context exclusion: {exclusion}")
|
| 179 |
+
|
| 180 |
+
# Context keywords positive matches
|
| 181 |
+
kw_count = 0
|
| 182 |
+
for kw in spec.get("context_keywords", []):
|
| 183 |
+
if kw.lower() in table_text:
|
| 184 |
+
kw_count += 1
|
| 185 |
+
if kw_count:
|
| 186 |
+
score += kw_count * 15
|
| 187 |
+
reasons.append(f"Context keywords matched: {kw_count}")
|
| 188 |
+
|
| 189 |
+
# First-cell exact match
|
| 190 |
+
if context.get('first_cell') and context['first_cell'].upper() == schema_name.upper():
|
| 191 |
score += 100
|
| 192 |
+
reasons.append("Exact first cell match")
|
| 193 |
|
| 194 |
+
# Heading pattern match
|
| 195 |
+
for h in spec.get("headings", []) or []:
|
| 196 |
+
pat = h.get("text") if isinstance(h, dict) and h.get("text") else h
|
| 197 |
+
try:
|
| 198 |
+
if pat and re.search(pat, context.get('heading', ""), re.IGNORECASE):
|
|
|
|
|
|
|
|
|
|
| 199 |
score += 50
|
| 200 |
+
reasons.append(f"Heading regex matched: {pat}")
|
| 201 |
+
break
|
| 202 |
+
except re.error:
|
| 203 |
+
if pat and pat.lower() in context.get('heading', "").lower():
|
| 204 |
+
score += 50
|
| 205 |
+
reasons.append(f"Heading substring matched: {pat}")
|
| 206 |
break
|
| 207 |
|
| 208 |
+
# Column header matching (strict)
|
| 209 |
if spec.get("columns"):
|
| 210 |
cols = [normalize_text(c) for c in spec["columns"]]
|
| 211 |
matches = 0
|
| 212 |
for col in cols:
|
| 213 |
+
if any(col.upper() in h.upper() for h in context.get('headers', [])):
|
| 214 |
matches += 1
|
| 215 |
if matches == len(cols):
|
| 216 |
score += 60
|
| 217 |
+
reasons.append("All expected columns matched exactly")
|
| 218 |
elif matches > 0:
|
| 219 |
score += matches * 20
|
| 220 |
reasons.append(f"Partial column matches: {matches}/{len(cols)}")
|
| 221 |
|
| 222 |
+
# Label matching for left-oriented tables
|
| 223 |
if spec.get("orientation") == "left":
|
| 224 |
labels = [normalize_text(lbl) for lbl in spec.get("labels", [])]
|
| 225 |
matches = 0
|
| 226 |
for lbl in labels:
|
| 227 |
+
if any(lbl.upper() in c.upper() or c.upper() in lbl.upper() for c in context.get('col0', [])):
|
| 228 |
matches += 1
|
| 229 |
if matches > 0:
|
| 230 |
score += (matches / max(1, len(labels))) * 30
|
| 231 |
+
reasons.append(f"Left-orientation label matches: {matches}/{len(labels)}")
|
| 232 |
|
| 233 |
+
# Row1 (header row) flexible matching
|
| 234 |
elif spec.get("orientation") == "row1":
|
| 235 |
labels = [normalize_text(lbl) for lbl in spec.get("labels", [])]
|
| 236 |
+
matches = 0.0
|
| 237 |
+
header_texts = " ".join(context.get('headers', [])).upper()
|
| 238 |
for lbl in labels:
|
| 239 |
+
label_upper = lbl.upper()
|
| 240 |
+
# exact in any header
|
| 241 |
+
if any(label_upper in h.upper() for h in context.get('headers', [])):
|
| 242 |
+
matches += 1.0
|
| 243 |
+
else:
|
| 244 |
+
# partial words from label in header_texts
|
| 245 |
+
for word in label_upper.split():
|
| 246 |
+
if len(word) > 3 and word in header_texts:
|
| 247 |
+
matches += 0.5
|
| 248 |
+
break
|
| 249 |
if matches > 0:
|
| 250 |
+
score += (matches / max(1.0, len(labels))) * 40
|
| 251 |
+
reasons.append(f"Row1 header-like matches: {matches}/{len(labels)}")
|
| 252 |
+
|
| 253 |
+
# Special handling for declaration schemas
|
| 254 |
+
if schema_name == "Operator Declaration":
|
| 255 |
+
# boost if 'print name' first cell and heading indicates operator declaration
|
| 256 |
+
if context.get('first_cell', "").upper().startswith("PRINT"):
|
| 257 |
+
if "OPERATOR DECLARATION" in context.get('heading', "").upper():
|
| 258 |
+
score += 80
|
| 259 |
+
reasons.append("Operator Declaration context & first-cell indicate match")
|
| 260 |
+
elif any("MANAGER" in c.upper() for c in context.get('all_cells', [])):
|
| 261 |
+
score += 60
|
| 262 |
+
reasons.append("Manager found in cells for Operator Declaration")
|
| 263 |
+
|
| 264 |
+
if schema_name == "NHVAS Approved Auditor Declaration":
|
| 265 |
+
if context.get('first_cell', "").upper().startswith("PRINT"):
|
| 266 |
+
# penalize where manager words appear (to reduce false positives)
|
| 267 |
+
if any("MANAGER" in c.upper() for c in context.get('all_cells', [])):
|
| 268 |
+
score -= 50
|
| 269 |
+
reasons.append("Penalty: found manager text in auditor declaration table")
|
| 270 |
|
| 271 |
return score, reasons
|
| 272 |
|
| 273 |
+
|
| 274 |
def match_table_schema(tbl):
|
| 275 |
+
"""
|
| 276 |
+
Iterate TABLE_SCHEMAS and pick best match by score threshold.
|
| 277 |
+
Returns schema name or None when below threshold.
|
| 278 |
+
"""
|
| 279 |
context = get_table_context(tbl)
|
| 280 |
best_match = None
|
| 281 |
+
best_score = float("-inf")
|
| 282 |
for name, spec in TABLE_SCHEMAS.items():
|
| 283 |
+
try:
|
| 284 |
+
score, reasons = calculate_schema_match_score(name, spec, context)
|
| 285 |
+
except Exception:
|
| 286 |
+
score, reasons = 0, ["error computing score"]
|
| 287 |
if score > best_score:
|
| 288 |
best_score = score
|
| 289 |
best_match = name
|
| 290 |
+
# threshold to avoid spurious picks
|
| 291 |
if best_score >= 20:
|
| 292 |
return best_match
|
| 293 |
return None
|
| 294 |
|
| 295 |
+
|
|
|
|
|
|
|
| 296 |
def check_multi_schema_table(tbl):
|
| 297 |
+
"""
|
| 298 |
+
Identify tables that contain multiple logical schemas (e.g., Operator Information + Contact Details)
|
| 299 |
+
Return list of schema names if multi, else None.
|
| 300 |
+
"""
|
| 301 |
context = get_table_context(tbl)
|
| 302 |
+
operator_labels = ["Operator name (Legal entity)", "NHVAS Accreditation No.", "Registered trading name/s",
|
| 303 |
+
"Australian Company Number", "NHVAS Manual"]
|
|
|
|
|
|
|
| 304 |
contact_labels = ["Operator business address", "Operator Postal address", "Email address", "Operator Telephone Number"]
|
| 305 |
+
has_operator = any(any(op_lbl.upper() in cell.upper() for op_lbl in operator_labels) for cell in context.get('col0', []))
|
| 306 |
+
has_contact = any(any(cont_lbl.upper() in cell.upper() for cont_lbl in contact_labels) for cell in context.get('col0', []))
|
| 307 |
if has_operator and has_contact:
|
| 308 |
return ["Operator Information", "Operator contact details"]
|
| 309 |
return None
|
| 310 |
|
| 311 |
+
|
| 312 |
def extract_multi_schema_table(tbl, schemas):
|
| 313 |
+
"""
|
| 314 |
+
For tables that embed multiple schema sections vertically (left orientation), split and extract.
|
| 315 |
+
Returns a dict mapping schema_name -> {label: [values,...]}
|
| 316 |
+
"""
|
| 317 |
result = {}
|
| 318 |
for schema_name in schemas:
|
| 319 |
if schema_name not in TABLE_SCHEMAS:
|
| 320 |
continue
|
| 321 |
spec = TABLE_SCHEMAS[schema_name]
|
| 322 |
schema_data = {}
|
| 323 |
+
# iterate rows and match the left-most cell against spec labels
|
| 324 |
for ri, row in enumerate(tbl.rows):
|
| 325 |
+
if not row.cells:
|
| 326 |
continue
|
| 327 |
row_label = normalize_text(row.cells[0].text)
|
| 328 |
+
belongs = False
|
| 329 |
matched_label = None
|
| 330 |
for spec_label in spec.get("labels", []):
|
| 331 |
spec_norm = normalize_text(spec_label).upper()
|
| 332 |
row_norm = row_label.upper()
|
| 333 |
if spec_norm == row_norm or spec_norm in row_norm or row_norm in spec_norm:
|
| 334 |
+
belongs = True
|
| 335 |
matched_label = spec_label
|
| 336 |
break
|
| 337 |
+
if not belongs:
|
| 338 |
continue
|
| 339 |
+
# gather red-text from the row's value cells (all others)
|
| 340 |
+
for ci, cell in enumerate(row.cells[1:], start=1):
|
| 341 |
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
|
| 342 |
if red_txt:
|
| 343 |
+
schema_data.setdefault(matched_label, []).append(red_txt)
|
|
|
|
|
|
|
| 344 |
if schema_data:
|
| 345 |
result[schema_name] = schema_data
|
| 346 |
return result
|
| 347 |
|
| 348 |
+
|
|
|
|
|
|
|
| 349 |
def extract_table_data(tbl, schema_name, spec):
|
| 350 |
+
"""
|
| 351 |
+
Extract red text from a table for a given schema.
|
| 352 |
+
Special handling for Vehicle Registration (row1 header orientation).
|
| 353 |
+
"""
|
| 354 |
+
# Vehicle Registration special-case (headers in first row)
|
| 355 |
if "Vehicle Registration" in schema_name:
|
| 356 |
print(f" 🚗 EXTRACTION FIX: Processing Vehicle Registration table")
|
| 357 |
labels = spec.get("labels", [])
|
|
|
|
| 359 |
seen = {lbl: set() for lbl in labels}
|
| 360 |
|
| 361 |
if len(tbl.rows) < 2:
|
| 362 |
+
print(" ❌ Vehicle table has less than 2 rows; skipping")
|
| 363 |
return {}
|
| 364 |
|
| 365 |
header_row = tbl.rows[0]
|
| 366 |
column_mapping = {}
|
|
|
|
| 367 |
print(f" 📋 Mapping {len(header_row.cells)} header cells to labels")
|
| 368 |
|
| 369 |
for col_idx, cell in enumerate(header_row.cells):
|
|
|
|
| 371 |
if not header_text:
|
| 372 |
continue
|
| 373 |
print(f" Column {col_idx}: '{header_text}'")
|
| 374 |
+
best_match = None
|
| 375 |
+
best_score = 0.0
|
| 376 |
+
|
| 377 |
+
for label in labels:
|
| 378 |
+
# exact match
|
| 379 |
+
if header_text.upper() == label.upper():
|
| 380 |
+
best_match = label
|
| 381 |
+
best_score = 1.0
|
| 382 |
+
break
|
| 383 |
+
|
| 384 |
+
# partial token overlap scoring
|
| 385 |
+
header_words = set(word.upper() for word in header_text.split() if len(word) > 2)
|
| 386 |
+
label_words = set(word.upper() for word in label.split() if len(word) > 2)
|
| 387 |
+
if header_words and label_words:
|
| 388 |
+
common = header_words.intersection(label_words)
|
| 389 |
+
if common:
|
| 390 |
+
score = len(common) / max(len(header_words), len(label_words))
|
| 391 |
+
if score > best_score and score >= 0.35: # relaxed threshold for OCR noise
|
| 392 |
+
best_score = score
|
| 393 |
+
best_match = label
|
| 394 |
+
|
| 395 |
+
if best_match:
|
| 396 |
+
column_mapping[col_idx] = best_match
|
| 397 |
+
print(f" ✅ Mapped to: '{best_match}' (score: {best_score:.2f})")
|
| 398 |
else:
|
| 399 |
+
# additional heuristics: simple substring matches
|
| 400 |
+
for label in labels:
|
| 401 |
+
if label.lower() in header_text.lower() or header_text.lower() in label.lower():
|
| 402 |
+
column_mapping[col_idx] = label
|
| 403 |
+
print(f" ✅ Mapped by substring to: '{label}'")
|
| 404 |
+
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 405 |
else:
|
| 406 |
print(f" ⚠️ No mapping found for '{header_text}'")
|
| 407 |
|
| 408 |
print(f" 📊 Total column mappings: {len(column_mapping)}")
|
| 409 |
|
| 410 |
+
# Extract data rows
|
| 411 |
for row_idx in range(1, len(tbl.rows)):
|
| 412 |
row = tbl.rows[row_idx]
|
| 413 |
print(f" 📌 Processing data row {row_idx}")
|
| 414 |
for col_idx, cell in enumerate(row.cells):
|
| 415 |
+
if col_idx not in column_mapping:
|
| 416 |
+
continue
|
| 417 |
+
label = column_mapping[col_idx]
|
| 418 |
+
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
|
| 419 |
+
if red_txt:
|
| 420 |
+
print(f" 🔴 Found red text in '{label}': '{red_txt}'")
|
| 421 |
+
if red_txt not in seen[label]:
|
| 422 |
+
seen[label].add(red_txt)
|
| 423 |
+
collected[label].append(red_txt)
|
| 424 |
+
|
| 425 |
result = {k: v for k, v in collected.items() if v}
|
| 426 |
print(f" ✅ Vehicle Registration extracted: {len(result)} columns with data")
|
| 427 |
return result
|
| 428 |
|
| 429 |
+
# Generic extraction for other table types
|
| 430 |
labels = spec.get("labels", []) + [schema_name]
|
| 431 |
collected = {lbl: [] for lbl in labels}
|
| 432 |
seen = {lbl: set() for lbl in labels}
|
|
|
|
| 439 |
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
|
| 440 |
if not red_txt:
|
| 441 |
continue
|
| 442 |
+
|
| 443 |
if by_col:
|
| 444 |
+
# column-wise mapping (header labels)
|
| 445 |
if ci < len(spec.get("labels", [])):
|
| 446 |
lbl = spec["labels"][ci]
|
| 447 |
else:
|
| 448 |
lbl = schema_name
|
| 449 |
else:
|
| 450 |
+
# left-oriented: match left label
|
| 451 |
raw_label = normalize_text(row.cells[0].text)
|
| 452 |
lbl = None
|
| 453 |
for spec_label in spec.get("labels", []):
|
|
|
|
| 463 |
break
|
| 464 |
if not lbl:
|
| 465 |
lbl = schema_name
|
| 466 |
+
|
| 467 |
+
if red_txt not in seen[lbl]:
|
| 468 |
seen[lbl].add(red_txt)
|
| 469 |
+
collected[lbl].append(red_txt)
|
| 470 |
+
|
| 471 |
return {k: v for k, v in collected.items() if v}
|
| 472 |
|
| 473 |
+
|
|
|
|
|
|
|
| 474 |
def extract_red_text(input_doc):
|
| 475 |
+
"""
|
| 476 |
+
Main extraction function.
|
| 477 |
+
Accepts a docx.Document object or a path string (filename).
|
| 478 |
+
Returns dictionary of extracted red-text organized by schema.
|
| 479 |
+
"""
|
| 480 |
if isinstance(input_doc, str):
|
| 481 |
doc = Document(input_doc)
|
| 482 |
else:
|
| 483 |
doc = input_doc
|
| 484 |
+
|
| 485 |
out = {}
|
| 486 |
table_count = 0
|
| 487 |
|
| 488 |
for tbl in doc.tables:
|
| 489 |
table_count += 1
|
| 490 |
+
# Check for multi-schema tables first
|
| 491 |
multi_schemas = check_multi_schema_table(tbl)
|
| 492 |
if multi_schemas:
|
| 493 |
multi_data = extract_multi_schema_table(tbl, multi_schemas)
|
| 494 |
for schema_name, schema_data in multi_data.items():
|
| 495 |
if schema_data:
|
| 496 |
+
if schema_name in out:
|
| 497 |
+
for k, v in schema_data.items():
|
| 498 |
+
out[schema_name].setdefault(k, []).extend(v)
|
| 499 |
+
else:
|
| 500 |
+
out[schema_name] = schema_data
|
|
|
|
|
|
|
|
|
|
| 501 |
continue
|
| 502 |
|
| 503 |
+
# match a single schema
|
| 504 |
schema = match_table_schema(tbl)
|
| 505 |
if not schema:
|
| 506 |
+
# no confident schema match
|
| 507 |
continue
|
| 508 |
+
spec = TABLE_SCHEMAS.get(schema, {})
|
| 509 |
data = extract_table_data(tbl, schema, spec)
|
| 510 |
if data:
|
| 511 |
+
if schema in out:
|
| 512 |
+
for k, v in data.items():
|
| 513 |
+
out[schema].setdefault(k, []).extend(v)
|
| 514 |
+
else:
|
| 515 |
+
out[schema] = data
|
| 516 |
+
|
| 517 |
+
# Paragraph-level red-text extraction (with contextual heading resolution)
|
|
|
|
|
|
|
| 518 |
paras = {}
|
| 519 |
for idx, para in enumerate(doc.paragraphs):
|
| 520 |
red_txt = "".join(r.text for r in para.runs if is_red_font(r)).strip()
|
| 521 |
if not red_txt:
|
| 522 |
continue
|
| 523 |
|
| 524 |
+
# attempt to find nearest preceding heading paragraph (using HEADING_PATTERNS)
|
| 525 |
context = None
|
| 526 |
for j in range(idx - 1, -1, -1):
|
| 527 |
txt = normalize_text(doc.paragraphs[j].text)
|
| 528 |
+
if not txt:
|
| 529 |
+
continue
|
| 530 |
+
all_patterns = HEADING_PATTERNS.get("main", []) + HEADING_PATTERNS.get("sub", [])
|
| 531 |
+
if any(re.search(p, txt, re.IGNORECASE) for p in all_patterns):
|
| 532 |
+
context = txt
|
| 533 |
+
break
|
| 534 |
|
| 535 |
+
# fallback: date-line mapping for 'Date' single-line red texts
|
| 536 |
+
if not context and re.fullmatch(PARAGRAPH_PATTERNS.get("date_line", r"^\s*\d{1,2}(?:st|nd|rd|th)?\s+[A-Za-z]+\s+\d{4}\s*$|^Date$"), red_txt):
|
| 537 |
context = "Date"
|
| 538 |
|
| 539 |
if not context:
|
| 540 |
context = "(para)"
|
| 541 |
+
|
| 542 |
+
paras.setdefault(context, []).append(red_txt)
|
|
|
|
| 543 |
|
| 544 |
if paras:
|
| 545 |
out["paragraphs"] = paras
|
| 546 |
+
|
| 547 |
return out
|
| 548 |
|
| 549 |
+
|
|
|
|
|
|
|
| 550 |
def extract_red_text_filelike(input_file, output_file):
|
| 551 |
+
"""
|
| 552 |
+
Accepts:
|
| 553 |
+
- input_file: file-like object (BytesIO/File) or path
|
| 554 |
+
- output_file: file-like object (opened for writing text) or path
|
| 555 |
+
Returns the parsed dictionary.
|
| 556 |
+
Writes the JSON to output_file if possible.
|
| 557 |
+
"""
|
| 558 |
+
# Reset file-like if necessary
|
| 559 |
if hasattr(input_file, "seek"):
|
| 560 |
+
try:
|
| 561 |
+
input_file.seek(0)
|
| 562 |
+
except Exception:
|
| 563 |
+
pass
|
| 564 |
+
|
| 565 |
+
# Load Document
|
| 566 |
+
if isinstance(input_file, (str, bytes)):
|
| 567 |
+
doc = Document(input_file)
|
| 568 |
+
else:
|
| 569 |
+
doc = Document(input_file)
|
| 570 |
+
|
| 571 |
result = extract_red_text(doc)
|
| 572 |
+
|
| 573 |
+
# Write result out
|
| 574 |
if hasattr(output_file, "write"):
|
| 575 |
json.dump(result, output_file, indent=2, ensure_ascii=False)
|
| 576 |
+
try:
|
| 577 |
+
output_file.flush()
|
| 578 |
+
except Exception:
|
| 579 |
+
pass
|
| 580 |
else:
|
| 581 |
with open(output_file, "w", encoding="utf-8") as f:
|
| 582 |
json.dump(result, f, indent=2, ensure_ascii=False)
|
| 583 |
+
|
| 584 |
return result
|
| 585 |
|
| 586 |
+
|
|
|
|
|
|
|
| 587 |
if __name__ == "__main__":
|
| 588 |
+
# Backwards-compatible script entry point
|
| 589 |
if len(sys.argv) == 3:
|
| 590 |
input_docx = sys.argv[1]
|
| 591 |
output_json = sys.argv[2]
|
| 592 |
+
try:
|
| 593 |
+
doc = Document(input_docx)
|
| 594 |
+
word_data = extract_red_text(doc)
|
| 595 |
+
with open(output_json, 'w', encoding='utf-8') as f:
|
| 596 |
+
json.dump(word_data, f, indent=2, ensure_ascii=False)
|
| 597 |
+
print(json.dumps(word_data, indent=2, ensure_ascii=False))
|
| 598 |
+
except Exception as e:
|
| 599 |
+
print("Error during extraction:", e)
|
| 600 |
+
raise
|
| 601 |
else:
|
| 602 |
print("To use as a module: extract_red_text_filelike(input_file, output_file)")
|