Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
|
| 3 |
+
from langchain.embeddings import HuggingFaceEmbeddings, HuggingFaceInstructEmbeddings, OpenAIEmbeddings
|
| 4 |
+
from langchain.vectorstores import Pinecone
|
| 5 |
+
import pinecone
|
| 6 |
+
import os
|
| 7 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
PINECONE_KEY = os.environ.get("PINECONE_KEY", "")
|
| 11 |
+
PINECONE_ENV = os.environ.get("PINECONE_ENV", "asia-northeast1-gcp")
|
| 12 |
+
PINECONE_INDEX = os.environ.get("PINECONE_INDEX", '3gpp-r16')
|
| 13 |
+
|
| 14 |
+
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "hkunlp/instructor-large")
|
| 15 |
+
EMBEDDING_LOADER = os.environ.get("EMBEDDING_LOADER", "HuggingFaceInstructEmbeddings")
|
| 16 |
+
EMBEDDING_LIST = ["HuggingFaceInstructEmbeddings", "HuggingFaceEmbeddings"]
|
| 17 |
+
|
| 18 |
+
# return top-k text chunks from vector store
|
| 19 |
+
TOP_K_DEFAULT = 15
|
| 20 |
+
TOP_K_MAX = 30
|
| 21 |
+
SCORE_DEFAULT = 0.33
|
| 22 |
+
|
| 23 |
+
global g_db
|
| 24 |
+
g_db = None
|
| 25 |
+
|
| 26 |
+
def init_db(emb_name, emb_loader, db_api_key, db_env, db_index):
|
| 27 |
+
|
| 28 |
+
embeddings = eval(emb_loader)(model_name=emb_name)
|
| 29 |
+
|
| 30 |
+
pinecone.init(api_key = db_api_key,
|
| 31 |
+
environment = db_env)
|
| 32 |
+
|
| 33 |
+
global g_db
|
| 34 |
+
|
| 35 |
+
g_db = Pinecone.from_existing_index(index_name = db_index,
|
| 36 |
+
embedding = embeddings)
|
| 37 |
+
return str(g_db)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def get_db():
|
| 41 |
+
return g_db
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def remove_duplicates(documents, score_min):
|
| 45 |
+
seen_content = set()
|
| 46 |
+
unique_documents = []
|
| 47 |
+
for (doc, score) in documents:
|
| 48 |
+
if (doc.page_content not in seen_content) and (score >= score_min):
|
| 49 |
+
seen_content.add(doc.page_content)
|
| 50 |
+
unique_documents.append(doc)
|
| 51 |
+
return unique_documents
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def get_data(query, top_k, score):
|
| 55 |
+
if not query:
|
| 56 |
+
return "Please init db in configuration"
|
| 57 |
+
|
| 58 |
+
print("Use db: " + str(g_db))
|
| 59 |
+
|
| 60 |
+
docs = g_db.similarity_search_with_score(query = query,
|
| 61 |
+
k=top_k)
|
| 62 |
+
#docsearch = db.as_retriever(search_kwargs={'k':top_k})
|
| 63 |
+
#docs = docsearch.get_relevant_documents(query)
|
| 64 |
+
udocs = remove_duplicates(docs, score)
|
| 65 |
+
return udocs
|
| 66 |
+
|
| 67 |
+
with gr.Blocks(
|
| 68 |
+
title = "3GPP Database",
|
| 69 |
+
theme = "Base",
|
| 70 |
+
css = """.bigbox {
|
| 71 |
+
min-height:250px;
|
| 72 |
+
}
|
| 73 |
+
""") as demo:
|
| 74 |
+
with gr.Tab("Matching"):
|
| 75 |
+
with gr.Accordion("Vector similarity"):
|
| 76 |
+
with gr.Row():
|
| 77 |
+
with gr.Column():
|
| 78 |
+
top_k = gr.Slider(1,
|
| 79 |
+
TOP_K_MAX,
|
| 80 |
+
value=TOP_K_DEFAULT,
|
| 81 |
+
step=1,
|
| 82 |
+
label="Vector similarity top_k",
|
| 83 |
+
interactive=True)
|
| 84 |
+
with gr.Column():
|
| 85 |
+
score = gr.Slider(0.01,
|
| 86 |
+
0.99,
|
| 87 |
+
value=SCORE_DEFAULT,
|
| 88 |
+
step=0.01,
|
| 89 |
+
label="Vector similarity score",
|
| 90 |
+
interactive=True)
|
| 91 |
+
|
| 92 |
+
with gr.Row():
|
| 93 |
+
inp = gr.Textbox(label = "Input",
|
| 94 |
+
placeholder="What are you looking for?")
|
| 95 |
+
out = gr.Textbox(label = "Output")
|
| 96 |
+
|
| 97 |
+
btn_run = gr.Button("Run", variant="primary")
|
| 98 |
+
|
| 99 |
+
with gr.Tab("Configuration"):
|
| 100 |
+
with gr.Row():
|
| 101 |
+
loading = gr.Textbox(get_db, max_lines=1, show_label=False)
|
| 102 |
+
btn_init = gr.Button("Init")
|
| 103 |
+
with gr.Accordion("Embedding"):
|
| 104 |
+
with gr.Row():
|
| 105 |
+
with gr.Column():
|
| 106 |
+
emb_textbox = gr.Textbox(
|
| 107 |
+
label = "Embedding Model",
|
| 108 |
+
# show_label = False,
|
| 109 |
+
value = EMBEDDING_MODEL,
|
| 110 |
+
placeholder = "Paste Your Embedding Model Repo on HuggingFace",
|
| 111 |
+
lines=1,
|
| 112 |
+
interactive=True,
|
| 113 |
+
type='email')
|
| 114 |
+
|
| 115 |
+
with gr.Column():
|
| 116 |
+
emb_dropdown = gr.Dropdown(
|
| 117 |
+
EMBEDDING_LIST,
|
| 118 |
+
value=EMBEDDING_LOADER,
|
| 119 |
+
multiselect=False,
|
| 120 |
+
interactive=True,
|
| 121 |
+
label="Embedding Loader")
|
| 122 |
+
|
| 123 |
+
with gr.Accordion("Pinecone Database"):
|
| 124 |
+
with gr.Row():
|
| 125 |
+
db_api_textbox = gr.Textbox(
|
| 126 |
+
label = "Pinecone API Key",
|
| 127 |
+
# show_label = False,
|
| 128 |
+
value = PINECONE_KEY,
|
| 129 |
+
placeholder = "Paste Your Pinecone API Key (xx-xx-xx-xx-xx) and Hit ENTER",
|
| 130 |
+
lines=1,
|
| 131 |
+
interactive=True,
|
| 132 |
+
type='password')
|
| 133 |
+
with gr.Row():
|
| 134 |
+
db_env_textbox = gr.Textbox(
|
| 135 |
+
label = "Pinecone Environment",
|
| 136 |
+
# show_label = False,
|
| 137 |
+
value = PINECONE_ENV,
|
| 138 |
+
placeholder = "Paste Your Pinecone Environment (xx-xx-xx) and Hit ENTER",
|
| 139 |
+
lines=1,
|
| 140 |
+
interactive=True,
|
| 141 |
+
type='email')
|
| 142 |
+
db_index_textbox = gr.Textbox(
|
| 143 |
+
label = "Pinecone Index",
|
| 144 |
+
# show_label = False,
|
| 145 |
+
value = PINECONE_INDEX,
|
| 146 |
+
placeholder = "Paste Your Pinecone Index (xxxx) and Hit ENTER",
|
| 147 |
+
lines=1,
|
| 148 |
+
interactive=True,
|
| 149 |
+
type='email')
|
| 150 |
+
|
| 151 |
+
btn_init.click(fn=init_db, inputs=[emb_textbox, emb_dropdown, db_api_textbox, db_env_textbox, db_index_textbox], outputs=loading)
|
| 152 |
+
btn_run.click(fn=get_data, inputs=[inp, top_k, score], outputs=out)
|
| 153 |
+
|
| 154 |
+
if __name__ == "__main__":
|
| 155 |
+
demo.queue()
|
| 156 |
+
demo.launch(inbrowser = True)
|