Spaces:
Sleeping
Sleeping
File size: 1,838 Bytes
eb4f0b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import streamlit as st
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
def main():
st.title("Excel Column Analysis Dashboard")
uploaded_file = st.file_uploader("Upload an Excel file", type=["xls", "xlsx"])
if uploaded_file is not None:
df = pd.read_excel(uploaded_file)
st.write("Preview of Data:")
st.write(df.head())
numeric_columns = df.select_dtypes(include=[np.number]).columns.tolist()
if numeric_columns:
selected_column = st.selectbox("Select a column for analysis (as named in the Excel file)", numeric_columns)
if selected_column:
data = df[selected_column].dropna()
std_dev = np.std(data, ddof=1)
st.write(f"**Calculated Standard Deviation:** {std_dev:.4f}")
fig, axes = plt.subplots(1, 2, figsize=(12, 5))
sns.histplot(data, kde=True, ax=axes[0], bins=20, color='blue')
axes[0].set_title(f"Distribution Plot of {selected_column}")
sns.lineplot(x=data.index, y=data, ax=axes[1], label='Data')
axes[1].axhline(y=np.mean(data), color='r', linestyle='--', label='Mean')
axes[1].axhline(y=np.mean(data) + std_dev, color='g', linestyle='--', label='+1 Std Dev')
axes[1].axhline(y=np.mean(data) - std_dev, color='g', linestyle='--', label='-1 Std Dev')
axes[1].legend()
axes[1].set_title(f"Standard Deviation Plot of {selected_column}")
st.pyplot(fig)
else:
st.warning("No numeric columns found in the uploaded file.")
if __name__ == "__main__":
main() |