Spaces:
Running
on
Zero
Running
on
Zero
| import logging | |
| import math | |
| import fvcore.nn.weight_init as weight_init | |
| import torch | |
| import torch.nn as nn | |
| from detectron2.layers import CNNBlockBase, Conv2d, get_norm | |
| from detectron2.modeling.backbone.fpn import _assert_strides_are_log2_contiguous | |
| from .backbone import Backbone | |
| from .utils import ( | |
| PatchEmbed, | |
| add_decomposed_rel_pos, | |
| get_abs_pos, | |
| window_partition, | |
| window_unpartition, | |
| ) | |
| logger = logging.getLogger(__name__) | |
| __all__ = ["ViT", "SimpleFeaturePyramid", "get_vit_lr_decay_rate"] | |
| class Attention(nn.Module): | |
| """Multi-head Attention block with relative position embeddings.""" | |
| def __init__( | |
| self, | |
| dim, | |
| num_heads=8, | |
| qkv_bias=True, | |
| use_rel_pos=False, | |
| rel_pos_zero_init=True, | |
| input_size=None, | |
| ): | |
| """ | |
| Args: | |
| dim (int): Number of input channels. | |
| num_heads (int): Number of attention heads. | |
| qkv_bias (bool: If True, add a learnable bias to query, key, value. | |
| rel_pos (bool): If True, add relative positional embeddings to the attention map. | |
| rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. | |
| input_size (int or None): Input resolution for calculating the relative positional | |
| parameter size. | |
| """ | |
| super().__init__() | |
| self.num_heads = num_heads | |
| head_dim = dim // num_heads | |
| self.scale = head_dim**-0.5 | |
| self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
| self.proj = nn.Linear(dim, dim) | |
| self.use_rel_pos = use_rel_pos | |
| if self.use_rel_pos: | |
| # initialize relative positional embeddings | |
| self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim)) | |
| self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim)) | |
| if not rel_pos_zero_init: | |
| nn.init.trunc_normal_(self.rel_pos_h, std=0.02) | |
| nn.init.trunc_normal_(self.rel_pos_w, std=0.02) | |
| def forward(self, x): | |
| B, H, W, _ = x.shape | |
| # qkv with shape (3, B, nHead, H * W, C) | |
| qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) | |
| # q, k, v with shape (B * nHead, H * W, C) | |
| q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0) | |
| attn = (q * self.scale) @ k.transpose(-2, -1) | |
| if self.use_rel_pos: | |
| attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)) | |
| attn = attn.softmax(dim=-1) | |
| x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1) | |
| x = self.proj(x) | |
| return x | |
| class ResBottleneckBlock(CNNBlockBase): | |
| """ | |
| The standard bottleneck residual block without the last activation layer. | |
| It contains 3 conv layers with kernels 1x1, 3x3, 1x1. | |
| """ | |
| def __init__( | |
| self, | |
| in_channels, | |
| out_channels, | |
| bottleneck_channels, | |
| norm="LN", | |
| act_layer=nn.GELU, | |
| ): | |
| """ | |
| Args: | |
| in_channels (int): Number of input channels. | |
| out_channels (int): Number of output channels. | |
| bottleneck_channels (int): number of output channels for the 3x3 | |
| "bottleneck" conv layers. | |
| norm (str or callable): normalization for all conv layers. | |
| See :func:`layers.get_norm` for supported format. | |
| act_layer (callable): activation for all conv layers. | |
| """ | |
| super().__init__(in_channels, out_channels, 1) | |
| self.conv1 = Conv2d(in_channels, bottleneck_channels, 1, bias=False) | |
| self.norm1 = get_norm(norm, bottleneck_channels) | |
| self.act1 = act_layer() | |
| self.conv2 = Conv2d( | |
| bottleneck_channels, | |
| bottleneck_channels, | |
| 3, | |
| padding=1, | |
| bias=False, | |
| ) | |
| self.norm2 = get_norm(norm, bottleneck_channels) | |
| self.act2 = act_layer() | |
| self.conv3 = Conv2d(bottleneck_channels, out_channels, 1, bias=False) | |
| self.norm3 = get_norm(norm, out_channels) | |
| for layer in [self.conv1, self.conv2, self.conv3]: | |
| weight_init.c2_msra_fill(layer) | |
| for layer in [self.norm1, self.norm2]: | |
| layer.weight.data.fill_(1.0) | |
| layer.bias.data.zero_() | |
| # zero init last norm layer. | |
| self.norm3.weight.data.zero_() | |
| self.norm3.bias.data.zero_() | |
| def forward(self, x): | |
| out = x | |
| for layer in self.children(): | |
| out = layer(out) | |
| out = x + out | |
| return out | |
| class Block(nn.Module): | |
| """Transformer blocks with support of window attention and residual propagation blocks""" | |
| def __init__( | |
| self, | |
| dim, | |
| num_heads, | |
| mlp_ratio=4.0, | |
| qkv_bias=True, | |
| drop_path=0.0, | |
| norm_layer=nn.LayerNorm, | |
| act_layer=nn.GELU, | |
| use_rel_pos=False, | |
| rel_pos_zero_init=True, | |
| window_size=0, | |
| use_residual_block=False, | |
| input_size=None, | |
| ): | |
| """ | |
| Args: | |
| dim (int): Number of input channels. | |
| num_heads (int): Number of attention heads in each ViT block. | |
| mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
| qkv_bias (bool): If True, add a learnable bias to query, key, value. | |
| drop_path (float): Stochastic depth rate. | |
| norm_layer (nn.Module): Normalization layer. | |
| act_layer (nn.Module): Activation layer. | |
| use_rel_pos (bool): If True, add relative positional embeddings to the attention map. | |
| rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. | |
| window_size (int): Window size for window attention blocks. If it equals 0, then not | |
| use window attention. | |
| use_residual_block (bool): If True, use a residual block after the MLP block. | |
| input_size (int or None): Input resolution for calculating the relative positional | |
| parameter size. | |
| """ | |
| super().__init__() | |
| self.norm1 = norm_layer(dim) | |
| self.attn = Attention( | |
| dim, | |
| num_heads=num_heads, | |
| qkv_bias=qkv_bias, | |
| use_rel_pos=use_rel_pos, | |
| rel_pos_zero_init=rel_pos_zero_init, | |
| input_size=input_size if window_size == 0 else (window_size, window_size), | |
| ) | |
| from timm.models.layers import DropPath, Mlp | |
| self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
| self.norm2 = norm_layer(dim) | |
| self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer) | |
| self.window_size = window_size | |
| self.use_residual_block = use_residual_block | |
| if use_residual_block: | |
| # Use a residual block with bottleneck channel as dim // 2 | |
| self.residual = ResBottleneckBlock( | |
| in_channels=dim, | |
| out_channels=dim, | |
| bottleneck_channels=dim // 2, | |
| norm="LN", | |
| act_layer=act_layer, | |
| ) | |
| def forward(self, x): | |
| shortcut = x | |
| x = self.norm1(x) | |
| # Window partition | |
| if self.window_size > 0: | |
| H, W = x.shape[1], x.shape[2] | |
| x, pad_hw = window_partition(x, self.window_size) | |
| x = self.attn(x) | |
| # Reverse window partition | |
| if self.window_size > 0: | |
| x = window_unpartition(x, self.window_size, pad_hw, (H, W)) | |
| x = shortcut + self.drop_path(x) | |
| x = x + self.drop_path(self.mlp(self.norm2(x))) | |
| if self.use_residual_block: | |
| x = self.residual(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1) | |
| return x | |
| class ViT(Backbone): | |
| """ | |
| This module implements Vision Transformer (ViT) backbone in :paper:`vitdet`. | |
| "Exploring Plain Vision Transformer Backbones for Object Detection", | |
| https://arxiv.org/abs/2203.16527 | |
| """ | |
| def __init__( | |
| self, | |
| img_size=1024, | |
| patch_size=16, | |
| in_chans=3, | |
| embed_dim=768, | |
| depth=12, | |
| num_heads=12, | |
| mlp_ratio=4.0, | |
| qkv_bias=True, | |
| drop_path_rate=0.0, | |
| norm_layer=nn.LayerNorm, | |
| act_layer=nn.GELU, | |
| use_abs_pos=True, | |
| use_rel_pos=False, | |
| rel_pos_zero_init=True, | |
| window_size=0, | |
| window_block_indexes=(), | |
| residual_block_indexes=(), | |
| use_act_checkpoint=False, | |
| pretrain_img_size=224, | |
| pretrain_use_cls_token=True, | |
| out_feature="last_feat", | |
| ): | |
| """ | |
| Args: | |
| img_size (int): Input image size. | |
| patch_size (int): Patch size. | |
| in_chans (int): Number of input image channels. | |
| embed_dim (int): Patch embedding dimension. | |
| depth (int): Depth of ViT. | |
| num_heads (int): Number of attention heads in each ViT block. | |
| mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
| qkv_bias (bool): If True, add a learnable bias to query, key, value. | |
| drop_path_rate (float): Stochastic depth rate. | |
| norm_layer (nn.Module): Normalization layer. | |
| act_layer (nn.Module): Activation layer. | |
| use_abs_pos (bool): If True, use absolute positional embeddings. | |
| use_rel_pos (bool): If True, add relative positional embeddings to the attention map. | |
| rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. | |
| window_size (int): Window size for window attention blocks. | |
| window_block_indexes (list): Indexes for blocks using window attention. | |
| residual_block_indexes (list): Indexes for blocks using conv propagation. | |
| use_act_checkpoint (bool): If True, use activation checkpointing. | |
| pretrain_img_size (int): input image size for pretraining models. | |
| pretrain_use_cls_token (bool): If True, pretrainig models use class token. | |
| out_feature (str): name of the feature from the last block. | |
| """ | |
| super().__init__() | |
| self.pretrain_use_cls_token = pretrain_use_cls_token | |
| self.patch_embed = PatchEmbed( | |
| kernel_size=(patch_size, patch_size), | |
| stride=(patch_size, patch_size), | |
| in_chans=in_chans, | |
| embed_dim=embed_dim, | |
| ) | |
| if use_abs_pos: | |
| # Initialize absolute positional embedding with pretrain image size. | |
| num_patches = (pretrain_img_size // patch_size) * (pretrain_img_size // patch_size) | |
| num_positions = (num_patches + 1) if pretrain_use_cls_token else num_patches | |
| self.pos_embed = nn.Parameter(torch.zeros(1, num_positions, embed_dim)) | |
| else: | |
| self.pos_embed = None | |
| # stochastic depth decay rule | |
| dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] | |
| self.blocks = nn.ModuleList() | |
| for i in range(depth): | |
| block = Block( | |
| dim=embed_dim, | |
| num_heads=num_heads, | |
| mlp_ratio=mlp_ratio, | |
| qkv_bias=qkv_bias, | |
| drop_path=dpr[i], | |
| norm_layer=norm_layer, | |
| act_layer=act_layer, | |
| use_rel_pos=use_rel_pos, | |
| rel_pos_zero_init=rel_pos_zero_init, | |
| window_size=window_size if i in window_block_indexes else 0, | |
| use_residual_block=i in residual_block_indexes, | |
| input_size=(img_size // patch_size, img_size // patch_size), | |
| ) | |
| if use_act_checkpoint: | |
| # TODO: use torch.utils.checkpoint | |
| from fairscale.nn.checkpoint import checkpoint_wrapper | |
| block = checkpoint_wrapper(block) | |
| self.blocks.append(block) | |
| self._out_feature_channels = {out_feature: embed_dim} | |
| self._out_feature_strides = {out_feature: patch_size} | |
| self._out_features = [out_feature] | |
| if self.pos_embed is not None: | |
| nn.init.trunc_normal_(self.pos_embed, std=0.02) | |
| self.apply(self._init_weights) | |
| def _init_weights(self, m): | |
| if isinstance(m, nn.Linear): | |
| nn.init.trunc_normal_(m.weight, std=0.02) | |
| if isinstance(m, nn.Linear) and m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.LayerNorm): | |
| nn.init.constant_(m.bias, 0) | |
| nn.init.constant_(m.weight, 1.0) | |
| def forward(self, x): | |
| x = self.patch_embed(x) | |
| if self.pos_embed is not None: | |
| x = x + get_abs_pos( | |
| self.pos_embed, self.pretrain_use_cls_token, (x.shape[1], x.shape[2]) | |
| ) | |
| for blk in self.blocks: | |
| x = blk(x) | |
| outputs = {self._out_features[0]: x.permute(0, 3, 1, 2)} | |
| return outputs | |
| class SimpleFeaturePyramid(Backbone): | |
| """ | |
| This module implements SimpleFeaturePyramid in :paper:`vitdet`. | |
| It creates pyramid features built on top of the input feature map. | |
| """ | |
| def __init__( | |
| self, | |
| net, | |
| in_feature, | |
| out_channels, | |
| scale_factors, | |
| top_block=None, | |
| norm="LN", | |
| square_pad=0, | |
| ): | |
| """ | |
| Args: | |
| net (Backbone): module representing the subnetwork backbone. | |
| Must be a subclass of :class:`Backbone`. | |
| in_feature (str): names of the input feature maps coming | |
| from the net. | |
| out_channels (int): number of channels in the output feature maps. | |
| scale_factors (list[float]): list of scaling factors to upsample or downsample | |
| the input features for creating pyramid features. | |
| top_block (nn.Module or None): if provided, an extra operation will | |
| be performed on the output of the last (smallest resolution) | |
| pyramid output, and the result will extend the result list. The top_block | |
| further downsamples the feature map. It must have an attribute | |
| "num_levels", meaning the number of extra pyramid levels added by | |
| this block, and "in_feature", which is a string representing | |
| its input feature (e.g., p5). | |
| norm (str): the normalization to use. | |
| square_pad (int): If > 0, require input images to be padded to specific square size. | |
| """ | |
| super(SimpleFeaturePyramid, self).__init__() | |
| assert isinstance(net, Backbone) | |
| self.scale_factors = scale_factors | |
| input_shapes = net.output_shape() | |
| strides = [int(input_shapes[in_feature].stride / scale) for scale in scale_factors] | |
| _assert_strides_are_log2_contiguous(strides) | |
| dim = input_shapes[in_feature].channels | |
| self.stages = [] | |
| use_bias = norm == "" | |
| for idx, scale in enumerate(scale_factors): | |
| out_dim = dim | |
| if scale == 4.0: | |
| layers = [ | |
| nn.ConvTranspose2d(dim, dim // 2, kernel_size=2, stride=2), | |
| get_norm(norm, dim // 2), | |
| nn.GELU(), | |
| nn.ConvTranspose2d(dim // 2, dim // 4, kernel_size=2, stride=2), | |
| ] | |
| out_dim = dim // 4 | |
| elif scale == 2.0: | |
| layers = [nn.ConvTranspose2d(dim, dim // 2, kernel_size=2, stride=2)] | |
| out_dim = dim // 2 | |
| elif scale == 1.0: | |
| layers = [] | |
| elif scale == 0.5: | |
| layers = [nn.MaxPool2d(kernel_size=2, stride=2)] | |
| else: | |
| raise NotImplementedError(f"scale_factor={scale} is not supported yet.") | |
| layers.extend( | |
| [ | |
| Conv2d( | |
| out_dim, | |
| out_channels, | |
| kernel_size=1, | |
| bias=use_bias, | |
| norm=get_norm(norm, out_channels), | |
| ), | |
| Conv2d( | |
| out_channels, | |
| out_channels, | |
| kernel_size=3, | |
| padding=1, | |
| bias=use_bias, | |
| norm=get_norm(norm, out_channels), | |
| ), | |
| ] | |
| ) | |
| layers = nn.Sequential(*layers) | |
| stage = int(math.log2(strides[idx])) | |
| self.add_module(f"simfp_{stage}", layers) | |
| self.stages.append(layers) | |
| self.net = net | |
| self.in_feature = in_feature | |
| self.top_block = top_block | |
| # Return feature names are "p<stage>", like ["p2", "p3", ..., "p6"] | |
| self._out_feature_strides = {"p{}".format(int(math.log2(s))): s for s in strides} | |
| # top block output feature maps. | |
| if self.top_block is not None: | |
| for s in range(stage, stage + self.top_block.num_levels): | |
| self._out_feature_strides["p{}".format(s + 1)] = 2 ** (s + 1) | |
| self._out_features = list(self._out_feature_strides.keys()) | |
| self._out_feature_channels = {k: out_channels for k in self._out_features} | |
| self._size_divisibility = strides[-1] | |
| self._square_pad = square_pad | |
| def padding_constraints(self): | |
| return { | |
| "size_divisiblity": self._size_divisibility, | |
| "square_size": self._square_pad, | |
| } | |
| def forward(self, x): | |
| """ | |
| Args: | |
| x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``. | |
| Returns: | |
| dict[str->Tensor]: | |
| mapping from feature map name to pyramid feature map tensor | |
| in high to low resolution order. Returned feature names follow the FPN | |
| convention: "p<stage>", where stage has stride = 2 ** stage e.g., | |
| ["p2", "p3", ..., "p6"]. | |
| """ | |
| bottom_up_features = self.net(x) | |
| features = bottom_up_features[self.in_feature] | |
| results = [] | |
| for stage in self.stages: | |
| results.append(stage(features)) | |
| if self.top_block is not None: | |
| if self.top_block.in_feature in bottom_up_features: | |
| top_block_in_feature = bottom_up_features[self.top_block.in_feature] | |
| else: | |
| top_block_in_feature = results[self._out_features.index(self.top_block.in_feature)] | |
| results.extend(self.top_block(top_block_in_feature)) | |
| assert len(self._out_features) == len(results) | |
| return {f: res for f, res in zip(self._out_features, results)} | |
| def get_vit_lr_decay_rate(name, lr_decay_rate=1.0, num_layers=12): | |
| """ | |
| Calculate lr decay rate for different ViT blocks. | |
| Args: | |
| name (string): parameter name. | |
| lr_decay_rate (float): base lr decay rate. | |
| num_layers (int): number of ViT blocks. | |
| Returns: | |
| lr decay rate for the given parameter. | |
| """ | |
| layer_id = num_layers + 1 | |
| if name.startswith("backbone"): | |
| if ".pos_embed" in name or ".patch_embed" in name: | |
| layer_id = 0 | |
| elif ".blocks." in name and ".residual." not in name: | |
| layer_id = int(name[name.find(".blocks.") :].split(".")[2]) + 1 | |
| return lr_decay_rate ** (num_layers + 1 - layer_id) | |