Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| import colorsys | |
| import logging | |
| import math | |
| import numpy as np | |
| from enum import Enum, unique | |
| import cv2 | |
| import matplotlib as mpl | |
| import matplotlib.colors as mplc | |
| import matplotlib.figure as mplfigure | |
| import pycocotools.mask as mask_util | |
| import torch | |
| from matplotlib.backends.backend_agg import FigureCanvasAgg | |
| from PIL import Image | |
| from detectron2.data import MetadataCatalog | |
| from detectron2.structures import BitMasks, Boxes, BoxMode, Keypoints, PolygonMasks, RotatedBoxes | |
| from detectron2.utils.file_io import PathManager | |
| from .colormap import random_color | |
| logger = logging.getLogger(__name__) | |
| __all__ = ["ColorMode", "VisImage", "Visualizer"] | |
| _SMALL_OBJECT_AREA_THRESH = 1000 | |
| _LARGE_MASK_AREA_THRESH = 120000 | |
| _OFF_WHITE = (1.0, 1.0, 240.0 / 255) | |
| _BLACK = (0, 0, 0) | |
| _RED = (1.0, 0, 0) | |
| _KEYPOINT_THRESHOLD = 0.05 | |
| class ColorMode(Enum): | |
| """ | |
| Enum of different color modes to use for instance visualizations. | |
| """ | |
| IMAGE = 0 | |
| """ | |
| Picks a random color for every instance and overlay segmentations with low opacity. | |
| """ | |
| SEGMENTATION = 1 | |
| """ | |
| Let instances of the same category have similar colors | |
| (from metadata.thing_colors), and overlay them with | |
| high opacity. This provides more attention on the quality of segmentation. | |
| """ | |
| IMAGE_BW = 2 | |
| """ | |
| Same as IMAGE, but convert all areas without masks to gray-scale. | |
| Only available for drawing per-instance mask predictions. | |
| """ | |
| class GenericMask: | |
| """ | |
| Attribute: | |
| polygons (list[ndarray]): list[ndarray]: polygons for this mask. | |
| Each ndarray has format [x, y, x, y, ...] | |
| mask (ndarray): a binary mask | |
| """ | |
| def __init__(self, mask_or_polygons, height, width): | |
| self._mask = self._polygons = self._has_holes = None | |
| self.height = height | |
| self.width = width | |
| m = mask_or_polygons | |
| if isinstance(m, dict): | |
| # RLEs | |
| assert "counts" in m and "size" in m | |
| if isinstance(m["counts"], list): # uncompressed RLEs | |
| h, w = m["size"] | |
| assert h == height and w == width | |
| m = mask_util.frPyObjects(m, h, w) | |
| self._mask = mask_util.decode(m)[:, :] | |
| return | |
| if isinstance(m, list): # list[ndarray] | |
| self._polygons = [np.asarray(x).reshape(-1) for x in m] | |
| return | |
| if isinstance(m, np.ndarray): # assumed to be a binary mask | |
| assert m.shape[1] != 2, m.shape | |
| assert m.shape == ( | |
| height, | |
| width, | |
| ), f"mask shape: {m.shape}, target dims: {height}, {width}" | |
| self._mask = m.astype("uint8") | |
| return | |
| raise ValueError("GenericMask cannot handle object {} of type '{}'".format(m, type(m))) | |
| def mask(self): | |
| if self._mask is None: | |
| self._mask = self.polygons_to_mask(self._polygons) | |
| return self._mask | |
| def polygons(self): | |
| if self._polygons is None: | |
| self._polygons, self._has_holes = self.mask_to_polygons(self._mask) | |
| return self._polygons | |
| def has_holes(self): | |
| if self._has_holes is None: | |
| if self._mask is not None: | |
| self._polygons, self._has_holes = self.mask_to_polygons(self._mask) | |
| else: | |
| self._has_holes = False # if original format is polygon, does not have holes | |
| return self._has_holes | |
| def mask_to_polygons(self, mask): | |
| # cv2.RETR_CCOMP flag retrieves all the contours and arranges them to a 2-level | |
| # hierarchy. External contours (boundary) of the object are placed in hierarchy-1. | |
| # Internal contours (holes) are placed in hierarchy-2. | |
| # cv2.CHAIN_APPROX_NONE flag gets vertices of polygons from contours. | |
| mask = np.ascontiguousarray(mask) # some versions of cv2 does not support incontiguous arr | |
| res = cv2.findContours(mask.astype("uint8"), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE) | |
| hierarchy = res[-1] | |
| if hierarchy is None: # empty mask | |
| return [], False | |
| has_holes = (hierarchy.reshape(-1, 4)[:, 3] >= 0).sum() > 0 | |
| res = res[-2] | |
| res = [x.flatten() for x in res] | |
| # These coordinates from OpenCV are integers in range [0, W-1 or H-1]. | |
| # We add 0.5 to turn them into real-value coordinate space. A better solution | |
| # would be to first +0.5 and then dilate the returned polygon by 0.5. | |
| res = [x + 0.5 for x in res if len(x) >= 6] | |
| return res, has_holes | |
| def polygons_to_mask(self, polygons): | |
| rle = mask_util.frPyObjects(polygons, self.height, self.width) | |
| rle = mask_util.merge(rle) | |
| return mask_util.decode(rle)[:, :] | |
| def area(self): | |
| return self.mask.sum() | |
| def bbox(self): | |
| p = mask_util.frPyObjects(self.polygons, self.height, self.width) | |
| p = mask_util.merge(p) | |
| bbox = mask_util.toBbox(p) | |
| bbox[2] += bbox[0] | |
| bbox[3] += bbox[1] | |
| return bbox | |
| class _PanopticPrediction: | |
| """ | |
| Unify different panoptic annotation/prediction formats | |
| """ | |
| def __init__(self, panoptic_seg, segments_info, metadata=None): | |
| if segments_info is None: | |
| assert metadata is not None | |
| # If "segments_info" is None, we assume "panoptic_img" is a | |
| # H*W int32 image storing the panoptic_id in the format of | |
| # category_id * label_divisor + instance_id. We reserve -1 for | |
| # VOID label. | |
| label_divisor = metadata.label_divisor | |
| segments_info = [] | |
| for panoptic_label in np.unique(panoptic_seg.numpy()): | |
| if panoptic_label == -1: | |
| # VOID region. | |
| continue | |
| pred_class = panoptic_label // label_divisor | |
| isthing = pred_class in metadata.thing_dataset_id_to_contiguous_id.values() | |
| segments_info.append( | |
| { | |
| "id": int(panoptic_label), | |
| "category_id": int(pred_class), | |
| "isthing": bool(isthing), | |
| } | |
| ) | |
| del metadata | |
| self._seg = panoptic_seg | |
| self._sinfo = {s["id"]: s for s in segments_info} # seg id -> seg info | |
| segment_ids, areas = torch.unique(panoptic_seg, sorted=True, return_counts=True) | |
| areas = areas.numpy() | |
| sorted_idxs = np.argsort(-areas) | |
| self._seg_ids, self._seg_areas = segment_ids[sorted_idxs], areas[sorted_idxs] | |
| self._seg_ids = self._seg_ids.tolist() | |
| for sid, area in zip(self._seg_ids, self._seg_areas): | |
| if sid in self._sinfo: | |
| self._sinfo[sid]["area"] = float(area) | |
| def non_empty_mask(self): | |
| """ | |
| Returns: | |
| (H, W) array, a mask for all pixels that have a prediction | |
| """ | |
| empty_ids = [] | |
| for id in self._seg_ids: | |
| if id not in self._sinfo: | |
| empty_ids.append(id) | |
| if len(empty_ids) == 0: | |
| return np.zeros(self._seg.shape, dtype=np.uint8) | |
| assert ( | |
| len(empty_ids) == 1 | |
| ), ">1 ids corresponds to no labels. This is currently not supported" | |
| return (self._seg != empty_ids[0]).numpy().astype(bool) | |
| def semantic_masks(self): | |
| for sid in self._seg_ids: | |
| sinfo = self._sinfo.get(sid) | |
| if sinfo is None or sinfo["isthing"]: | |
| # Some pixels (e.g. id 0 in PanopticFPN) have no instance or semantic predictions. | |
| continue | |
| yield (self._seg == sid).numpy().astype(bool), sinfo | |
| def instance_masks(self): | |
| for sid in self._seg_ids: | |
| sinfo = self._sinfo.get(sid) | |
| if sinfo is None or not sinfo["isthing"]: | |
| continue | |
| mask = (self._seg == sid).numpy().astype(bool) | |
| if mask.sum() > 0: | |
| yield mask, sinfo | |
| def _create_text_labels(classes, scores, class_names, is_crowd=None): | |
| """ | |
| Args: | |
| classes (list[int] or None): | |
| scores (list[float] or None): | |
| class_names (list[str] or None): | |
| is_crowd (list[bool] or None): | |
| Returns: | |
| list[str] or None | |
| """ | |
| labels = None | |
| if classes is not None: | |
| if class_names is not None and len(class_names) > 0: | |
| labels = [class_names[i] for i in classes] | |
| else: | |
| labels = [str(i) for i in classes] | |
| if scores is not None: | |
| if labels is None: | |
| labels = ["{:.0f}%".format(s * 100) for s in scores] | |
| else: | |
| labels = ["{} {:.0f}%".format(l, s * 100) for l, s in zip(labels, scores)] | |
| if labels is not None and is_crowd is not None: | |
| labels = [l + ("|crowd" if crowd else "") for l, crowd in zip(labels, is_crowd)] | |
| return labels | |
| class VisImage: | |
| def __init__(self, img, scale=1.0): | |
| """ | |
| Args: | |
| img (ndarray): an RGB image of shape (H, W, 3) in range [0, 255]. | |
| scale (float): scale the input image | |
| """ | |
| self.img = img | |
| self.scale = scale | |
| self.width, self.height = img.shape[1], img.shape[0] | |
| self._setup_figure(img) | |
| def _setup_figure(self, img): | |
| """ | |
| Args: | |
| Same as in :meth:`__init__()`. | |
| Returns: | |
| fig (matplotlib.pyplot.figure): top level container for all the image plot elements. | |
| ax (matplotlib.pyplot.Axes): contains figure elements and sets the coordinate system. | |
| """ | |
| fig = mplfigure.Figure(frameon=False) | |
| self.dpi = fig.get_dpi() | |
| # add a small 1e-2 to avoid precision lost due to matplotlib's truncation | |
| # (https://github.com/matplotlib/matplotlib/issues/15363) | |
| fig.set_size_inches( | |
| (self.width * self.scale + 1e-2) / self.dpi, | |
| (self.height * self.scale + 1e-2) / self.dpi, | |
| ) | |
| self.canvas = FigureCanvasAgg(fig) | |
| # self.canvas = mpl.backends.backend_cairo.FigureCanvasCairo(fig) | |
| ax = fig.add_axes([0.0, 0.0, 1.0, 1.0]) | |
| ax.axis("off") | |
| self.fig = fig | |
| self.ax = ax | |
| self.reset_image(img) | |
| def reset_image(self, img): | |
| """ | |
| Args: | |
| img: same as in __init__ | |
| """ | |
| img = img.astype("uint8") | |
| self.ax.imshow(img, extent=(0, self.width, self.height, 0), interpolation="nearest") | |
| def save(self, filepath): | |
| """ | |
| Args: | |
| filepath (str): a string that contains the absolute path, including the file name, where | |
| the visualized image will be saved. | |
| """ | |
| self.fig.savefig(filepath) | |
| def get_image(self): | |
| """ | |
| Returns: | |
| ndarray: | |
| the visualized image of shape (H, W, 3) (RGB) in uint8 type. | |
| The shape is scaled w.r.t the input image using the given `scale` argument. | |
| """ | |
| canvas = self.canvas | |
| s, (width, height) = canvas.print_to_buffer() | |
| # buf = io.BytesIO() # works for cairo backend | |
| # canvas.print_rgba(buf) | |
| # width, height = self.width, self.height | |
| # s = buf.getvalue() | |
| buffer = np.frombuffer(s, dtype="uint8") | |
| img_rgba = buffer.reshape(height, width, 4) | |
| rgb, alpha = np.split(img_rgba, [3], axis=2) | |
| return rgb.astype("uint8") | |
| class Visualizer: | |
| """ | |
| Visualizer that draws data about detection/segmentation on images. | |
| It contains methods like `draw_{text,box,circle,line,binary_mask,polygon}` | |
| that draw primitive objects to images, as well as high-level wrappers like | |
| `draw_{instance_predictions,sem_seg,panoptic_seg_predictions,dataset_dict}` | |
| that draw composite data in some pre-defined style. | |
| Note that the exact visualization style for the high-level wrappers are subject to change. | |
| Style such as color, opacity, label contents, visibility of labels, or even the visibility | |
| of objects themselves (e.g. when the object is too small) may change according | |
| to different heuristics, as long as the results still look visually reasonable. | |
| To obtain a consistent style, you can implement custom drawing functions with the | |
| abovementioned primitive methods instead. If you need more customized visualization | |
| styles, you can process the data yourself following their format documented in | |
| tutorials (:doc:`/tutorials/models`, :doc:`/tutorials/datasets`). This class does not | |
| intend to satisfy everyone's preference on drawing styles. | |
| This visualizer focuses on high rendering quality rather than performance. It is not | |
| designed to be used for real-time applications. | |
| """ | |
| # TODO implement a fast, rasterized version using OpenCV | |
| def __init__(self, img_rgb, metadata=None, scale=1.0, instance_mode=ColorMode.IMAGE): | |
| """ | |
| Args: | |
| img_rgb: a numpy array of shape (H, W, C), where H and W correspond to | |
| the height and width of the image respectively. C is the number of | |
| color channels. The image is required to be in RGB format since that | |
| is a requirement of the Matplotlib library. The image is also expected | |
| to be in the range [0, 255]. | |
| metadata (Metadata): dataset metadata (e.g. class names and colors) | |
| instance_mode (ColorMode): defines one of the pre-defined style for drawing | |
| instances on an image. | |
| """ | |
| self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8) | |
| if metadata is None: | |
| metadata = MetadataCatalog.get("__nonexist__") | |
| self.metadata = metadata | |
| self.output = VisImage(self.img, scale=scale) | |
| self.cpu_device = torch.device("cpu") | |
| # too small texts are useless, therefore clamp to 9 | |
| self._default_font_size = max( | |
| np.sqrt(self.output.height * self.output.width) // 90, 10 // scale | |
| ) | |
| self._instance_mode = instance_mode | |
| self.keypoint_threshold = _KEYPOINT_THRESHOLD | |
| def draw_instance_predictions(self, predictions): | |
| """ | |
| Draw instance-level prediction results on an image. | |
| Args: | |
| predictions (Instances): the output of an instance detection/segmentation | |
| model. Following fields will be used to draw: | |
| "pred_boxes", "pred_classes", "scores", "pred_masks" (or "pred_masks_rle"). | |
| Returns: | |
| output (VisImage): image object with visualizations. | |
| """ | |
| boxes = predictions.pred_boxes if predictions.has("pred_boxes") else None | |
| scores = predictions.scores if predictions.has("scores") else None | |
| classes = predictions.pred_classes.tolist() if predictions.has("pred_classes") else None | |
| labels = _create_text_labels(classes, scores, self.metadata.get("thing_classes", None)) | |
| keypoints = predictions.pred_keypoints if predictions.has("pred_keypoints") else None | |
| if predictions.has("pred_masks"): | |
| masks = np.asarray(predictions.pred_masks) | |
| masks = [GenericMask(x, self.output.height, self.output.width) for x in masks] | |
| else: | |
| masks = None | |
| if self._instance_mode == ColorMode.SEGMENTATION and self.metadata.get("thing_colors"): | |
| colors = [ | |
| self._jitter([x / 255 for x in self.metadata.thing_colors[c]]) for c in classes | |
| ] | |
| alpha = 0.8 | |
| else: | |
| colors = None | |
| alpha = 0.5 | |
| if self._instance_mode == ColorMode.IMAGE_BW: | |
| self.output.reset_image( | |
| self._create_grayscale_image( | |
| (predictions.pred_masks.any(dim=0) > 0).numpy() | |
| if predictions.has("pred_masks") | |
| else None | |
| ) | |
| ) | |
| alpha = 0.3 | |
| self.overlay_instances( | |
| masks=masks, | |
| boxes=boxes, | |
| labels=labels, | |
| keypoints=keypoints, | |
| assigned_colors=colors, | |
| alpha=alpha, | |
| ) | |
| return self.output | |
| def draw_sem_seg(self, sem_seg, area_threshold=None, alpha=0.8): | |
| """ | |
| Draw semantic segmentation predictions/labels. | |
| Args: | |
| sem_seg (Tensor or ndarray): the segmentation of shape (H, W). | |
| Each value is the integer label of the pixel. | |
| area_threshold (int): segments with less than `area_threshold` are not drawn. | |
| alpha (float): the larger it is, the more opaque the segmentations are. | |
| Returns: | |
| output (VisImage): image object with visualizations. | |
| """ | |
| if isinstance(sem_seg, torch.Tensor): | |
| sem_seg = sem_seg.numpy() | |
| labels, areas = np.unique(sem_seg, return_counts=True) | |
| sorted_idxs = np.argsort(-areas).tolist() | |
| labels = labels[sorted_idxs] | |
| for label in filter(lambda l: l < len(self.metadata.stuff_classes), labels): | |
| try: | |
| mask_color = [x / 255 for x in self.metadata.stuff_colors[label]] | |
| except (AttributeError, IndexError): | |
| mask_color = None | |
| binary_mask = (sem_seg == label).astype(np.uint8) | |
| text = self.metadata.stuff_classes[label] | |
| self.draw_binary_mask( | |
| binary_mask, | |
| color=mask_color, | |
| edge_color=_OFF_WHITE, | |
| text=text, | |
| alpha=alpha, | |
| area_threshold=area_threshold, | |
| ) | |
| return self.output | |
| def draw_panoptic_seg(self, panoptic_seg, segments_info, area_threshold=None, alpha=0.7): | |
| """ | |
| Draw panoptic prediction annotations or results. | |
| Args: | |
| panoptic_seg (Tensor): of shape (height, width) where the values are ids for each | |
| segment. | |
| segments_info (list[dict] or None): Describe each segment in `panoptic_seg`. | |
| If it is a ``list[dict]``, each dict contains keys "id", "category_id". | |
| If None, category id of each pixel is computed by | |
| ``pixel // metadata.label_divisor``. | |
| area_threshold (int): stuff segments with less than `area_threshold` are not drawn. | |
| Returns: | |
| output (VisImage): image object with visualizations. | |
| """ | |
| pred = _PanopticPrediction(panoptic_seg, segments_info, self.metadata) | |
| if self._instance_mode == ColorMode.IMAGE_BW: | |
| self.output.reset_image(self._create_grayscale_image(pred.non_empty_mask())) | |
| # draw mask for all semantic segments first i.e. "stuff" | |
| for mask, sinfo in pred.semantic_masks(): | |
| category_idx = sinfo["category_id"] | |
| try: | |
| mask_color = [x / 255 for x in self.metadata.stuff_colors[category_idx]] | |
| except AttributeError: | |
| mask_color = None | |
| text = self.metadata.stuff_classes[category_idx] | |
| self.draw_binary_mask( | |
| mask, | |
| color=mask_color, | |
| edge_color=_OFF_WHITE, | |
| text=text, | |
| alpha=alpha, | |
| area_threshold=area_threshold, | |
| ) | |
| # draw mask for all instances second | |
| all_instances = list(pred.instance_masks()) | |
| if len(all_instances) == 0: | |
| return self.output | |
| masks, sinfo = list(zip(*all_instances)) | |
| category_ids = [x["category_id"] for x in sinfo] | |
| try: | |
| scores = [x["score"] for x in sinfo] | |
| except KeyError: | |
| scores = None | |
| labels = _create_text_labels( | |
| category_ids, scores, self.metadata.thing_classes, [x.get("iscrowd", 0) for x in sinfo] | |
| ) | |
| try: | |
| colors = [ | |
| self._jitter([x / 255 for x in self.metadata.thing_colors[c]]) for c in category_ids | |
| ] | |
| except AttributeError: | |
| colors = None | |
| self.overlay_instances(masks=masks, labels=labels, assigned_colors=colors, alpha=alpha) | |
| return self.output | |
| draw_panoptic_seg_predictions = draw_panoptic_seg # backward compatibility | |
| def draw_dataset_dict(self, dic): | |
| """ | |
| Draw annotations/segmentations in Detectron2 Dataset format. | |
| Args: | |
| dic (dict): annotation/segmentation data of one image, in Detectron2 Dataset format. | |
| Returns: | |
| output (VisImage): image object with visualizations. | |
| """ | |
| annos = dic.get("annotations", None) | |
| if annos: | |
| if "segmentation" in annos[0]: | |
| masks = [x["segmentation"] for x in annos] | |
| else: | |
| masks = None | |
| if "keypoints" in annos[0]: | |
| keypts = [x["keypoints"] for x in annos] | |
| keypts = np.array(keypts).reshape(len(annos), -1, 3) | |
| else: | |
| keypts = None | |
| boxes = [ | |
| BoxMode.convert(x["bbox"], x["bbox_mode"], BoxMode.XYXY_ABS) | |
| if len(x["bbox"]) == 4 | |
| else x["bbox"] | |
| for x in annos | |
| ] | |
| colors = None | |
| category_ids = [x["category_id"] for x in annos] | |
| if self._instance_mode == ColorMode.SEGMENTATION and self.metadata.get("thing_colors"): | |
| colors = [ | |
| self._jitter([x / 255 for x in self.metadata.thing_colors[c]]) | |
| for c in category_ids | |
| ] | |
| names = self.metadata.get("thing_classes", None) | |
| labels = _create_text_labels( | |
| category_ids, | |
| scores=None, | |
| class_names=names, | |
| is_crowd=[x.get("iscrowd", 0) for x in annos], | |
| ) | |
| self.overlay_instances( | |
| labels=labels, boxes=boxes, masks=masks, keypoints=keypts, assigned_colors=colors | |
| ) | |
| sem_seg = dic.get("sem_seg", None) | |
| if sem_seg is None and "sem_seg_file_name" in dic: | |
| with PathManager.open(dic["sem_seg_file_name"], "rb") as f: | |
| sem_seg = Image.open(f) | |
| sem_seg = np.asarray(sem_seg, dtype="uint8") | |
| if sem_seg is not None: | |
| self.draw_sem_seg(sem_seg, area_threshold=0, alpha=0.5) | |
| pan_seg = dic.get("pan_seg", None) | |
| if pan_seg is None and "pan_seg_file_name" in dic: | |
| with PathManager.open(dic["pan_seg_file_name"], "rb") as f: | |
| pan_seg = Image.open(f) | |
| pan_seg = np.asarray(pan_seg) | |
| from panopticapi.utils import rgb2id | |
| pan_seg = rgb2id(pan_seg) | |
| if pan_seg is not None: | |
| segments_info = dic["segments_info"] | |
| pan_seg = torch.tensor(pan_seg) | |
| self.draw_panoptic_seg(pan_seg, segments_info, area_threshold=0, alpha=0.5) | |
| return self.output | |
| def overlay_instances( | |
| self, | |
| *, | |
| boxes=None, | |
| labels=None, | |
| masks=None, | |
| keypoints=None, | |
| assigned_colors=None, | |
| alpha=0.5, | |
| ): | |
| """ | |
| Args: | |
| boxes (Boxes, RotatedBoxes or ndarray): either a :class:`Boxes`, | |
| or an Nx4 numpy array of XYXY_ABS format for the N objects in a single image, | |
| or a :class:`RotatedBoxes`, | |
| or an Nx5 numpy array of (x_center, y_center, width, height, angle_degrees) format | |
| for the N objects in a single image, | |
| labels (list[str]): the text to be displayed for each instance. | |
| masks (masks-like object): Supported types are: | |
| * :class:`detectron2.structures.PolygonMasks`, | |
| :class:`detectron2.structures.BitMasks`. | |
| * list[list[ndarray]]: contains the segmentation masks for all objects in one image. | |
| The first level of the list corresponds to individual instances. The second | |
| level to all the polygon that compose the instance, and the third level | |
| to the polygon coordinates. The third level should have the format of | |
| [x0, y0, x1, y1, ..., xn, yn] (n >= 3). | |
| * list[ndarray]: each ndarray is a binary mask of shape (H, W). | |
| * list[dict]: each dict is a COCO-style RLE. | |
| keypoints (Keypoint or array like): an array-like object of shape (N, K, 3), | |
| where the N is the number of instances and K is the number of keypoints. | |
| The last dimension corresponds to (x, y, visibility or score). | |
| assigned_colors (list[matplotlib.colors]): a list of colors, where each color | |
| corresponds to each mask or box in the image. Refer to 'matplotlib.colors' | |
| for full list of formats that the colors are accepted in. | |
| Returns: | |
| output (VisImage): image object with visualizations. | |
| """ | |
| num_instances = 0 | |
| if boxes is not None: | |
| boxes = self._convert_boxes(boxes) | |
| num_instances = len(boxes) | |
| if masks is not None: | |
| masks = self._convert_masks(masks) | |
| if num_instances: | |
| assert len(masks) == num_instances | |
| else: | |
| num_instances = len(masks) | |
| if keypoints is not None: | |
| if num_instances: | |
| assert len(keypoints) == num_instances | |
| else: | |
| num_instances = len(keypoints) | |
| keypoints = self._convert_keypoints(keypoints) | |
| if labels is not None: | |
| assert len(labels) == num_instances | |
| if assigned_colors is None: | |
| assigned_colors = [random_color(rgb=True, maximum=1) for _ in range(num_instances)] | |
| if num_instances == 0: | |
| return self.output | |
| if boxes is not None and boxes.shape[1] == 5: | |
| return self.overlay_rotated_instances( | |
| boxes=boxes, labels=labels, assigned_colors=assigned_colors | |
| ) | |
| # Display in largest to smallest order to reduce occlusion. | |
| areas = None | |
| if boxes is not None: | |
| areas = np.prod(boxes[:, 2:] - boxes[:, :2], axis=1) | |
| elif masks is not None: | |
| areas = np.asarray([x.area() for x in masks]) | |
| if areas is not None: | |
| sorted_idxs = np.argsort(-areas).tolist() | |
| # Re-order overlapped instances in descending order. | |
| boxes = boxes[sorted_idxs] if boxes is not None else None | |
| labels = [labels[k] for k in sorted_idxs] if labels is not None else None | |
| masks = [masks[idx] for idx in sorted_idxs] if masks is not None else None | |
| assigned_colors = [assigned_colors[idx] for idx in sorted_idxs] | |
| keypoints = keypoints[sorted_idxs] if keypoints is not None else None | |
| for i in range(num_instances): | |
| color = assigned_colors[i] | |
| if boxes is not None: | |
| self.draw_box(boxes[i], edge_color=color) | |
| if masks is not None: | |
| for segment in masks[i].polygons: | |
| self.draw_polygon(segment.reshape(-1, 2), color, alpha=alpha) | |
| if labels is not None: | |
| # first get a box | |
| if boxes is not None: | |
| x0, y0, x1, y1 = boxes[i] | |
| text_pos = (x0, y0) # if drawing boxes, put text on the box corner. | |
| horiz_align = "left" | |
| elif masks is not None: | |
| # skip small mask without polygon | |
| if len(masks[i].polygons) == 0: | |
| continue | |
| x0, y0, x1, y1 = masks[i].bbox() | |
| # draw text in the center (defined by median) when box is not drawn | |
| # median is less sensitive to outliers. | |
| text_pos = np.median(masks[i].mask.nonzero(), axis=1)[::-1] | |
| horiz_align = "center" | |
| else: | |
| continue # drawing the box confidence for keypoints isn't very useful. | |
| # for small objects, draw text at the side to avoid occlusion | |
| instance_area = (y1 - y0) * (x1 - x0) | |
| if ( | |
| instance_area < _SMALL_OBJECT_AREA_THRESH * self.output.scale | |
| or y1 - y0 < 40 * self.output.scale | |
| ): | |
| if y1 >= self.output.height - 5: | |
| text_pos = (x1, y0) | |
| else: | |
| text_pos = (x0, y1) | |
| height_ratio = (y1 - y0) / np.sqrt(self.output.height * self.output.width) | |
| lighter_color = self._change_color_brightness(color, brightness_factor=0.7) | |
| font_size = ( | |
| np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2) | |
| * 0.5 | |
| * self._default_font_size | |
| ) | |
| self.draw_text( | |
| labels[i], | |
| text_pos, | |
| color=lighter_color, | |
| horizontal_alignment=horiz_align, | |
| font_size=font_size, | |
| ) | |
| # draw keypoints | |
| if keypoints is not None: | |
| for keypoints_per_instance in keypoints: | |
| self.draw_and_connect_keypoints(keypoints_per_instance) | |
| return self.output | |
| def overlay_rotated_instances(self, boxes=None, labels=None, assigned_colors=None): | |
| """ | |
| Args: | |
| boxes (ndarray): an Nx5 numpy array of | |
| (x_center, y_center, width, height, angle_degrees) format | |
| for the N objects in a single image. | |
| labels (list[str]): the text to be displayed for each instance. | |
| assigned_colors (list[matplotlib.colors]): a list of colors, where each color | |
| corresponds to each mask or box in the image. Refer to 'matplotlib.colors' | |
| for full list of formats that the colors are accepted in. | |
| Returns: | |
| output (VisImage): image object with visualizations. | |
| """ | |
| num_instances = len(boxes) | |
| if assigned_colors is None: | |
| assigned_colors = [random_color(rgb=True, maximum=1) for _ in range(num_instances)] | |
| if num_instances == 0: | |
| return self.output | |
| # Display in largest to smallest order to reduce occlusion. | |
| if boxes is not None: | |
| areas = boxes[:, 2] * boxes[:, 3] | |
| sorted_idxs = np.argsort(-areas).tolist() | |
| # Re-order overlapped instances in descending order. | |
| boxes = boxes[sorted_idxs] | |
| labels = [labels[k] for k in sorted_idxs] if labels is not None else None | |
| colors = [assigned_colors[idx] for idx in sorted_idxs] | |
| for i in range(num_instances): | |
| self.draw_rotated_box_with_label( | |
| boxes[i], edge_color=colors[i], label=labels[i] if labels is not None else None | |
| ) | |
| return self.output | |
| def draw_and_connect_keypoints(self, keypoints): | |
| """ | |
| Draws keypoints of an instance and follows the rules for keypoint connections | |
| to draw lines between appropriate keypoints. This follows color heuristics for | |
| line color. | |
| Args: | |
| keypoints (Tensor): a tensor of shape (K, 3), where K is the number of keypoints | |
| and the last dimension corresponds to (x, y, probability). | |
| Returns: | |
| output (VisImage): image object with visualizations. | |
| """ | |
| visible = {} | |
| keypoint_names = self.metadata.get("keypoint_names") | |
| for idx, keypoint in enumerate(keypoints): | |
| # draw keypoint | |
| x, y, prob = keypoint | |
| if prob > self.keypoint_threshold: | |
| self.draw_circle((x, y), color=_RED) | |
| if keypoint_names: | |
| keypoint_name = keypoint_names[idx] | |
| visible[keypoint_name] = (x, y) | |
| if self.metadata.get("keypoint_connection_rules"): | |
| for kp0, kp1, color in self.metadata.keypoint_connection_rules: | |
| if kp0 in visible and kp1 in visible: | |
| x0, y0 = visible[kp0] | |
| x1, y1 = visible[kp1] | |
| color = tuple(x / 255.0 for x in color) | |
| self.draw_line([x0, x1], [y0, y1], color=color) | |
| # draw lines from nose to mid-shoulder and mid-shoulder to mid-hip | |
| # Note that this strategy is specific to person keypoints. | |
| # For other keypoints, it should just do nothing | |
| try: | |
| ls_x, ls_y = visible["left_shoulder"] | |
| rs_x, rs_y = visible["right_shoulder"] | |
| mid_shoulder_x, mid_shoulder_y = (ls_x + rs_x) / 2, (ls_y + rs_y) / 2 | |
| except KeyError: | |
| pass | |
| else: | |
| # draw line from nose to mid-shoulder | |
| nose_x, nose_y = visible.get("nose", (None, None)) | |
| if nose_x is not None: | |
| self.draw_line([nose_x, mid_shoulder_x], [nose_y, mid_shoulder_y], color=_RED) | |
| try: | |
| # draw line from mid-shoulder to mid-hip | |
| lh_x, lh_y = visible["left_hip"] | |
| rh_x, rh_y = visible["right_hip"] | |
| except KeyError: | |
| pass | |
| else: | |
| mid_hip_x, mid_hip_y = (lh_x + rh_x) / 2, (lh_y + rh_y) / 2 | |
| self.draw_line([mid_hip_x, mid_shoulder_x], [mid_hip_y, mid_shoulder_y], color=_RED) | |
| return self.output | |
| """ | |
| Primitive drawing functions: | |
| """ | |
| def draw_text( | |
| self, | |
| text, | |
| position, | |
| *, | |
| font_size=None, | |
| color="g", | |
| horizontal_alignment="center", | |
| rotation=0, | |
| ): | |
| """ | |
| Args: | |
| text (str): class label | |
| position (tuple): a tuple of the x and y coordinates to place text on image. | |
| font_size (int, optional): font of the text. If not provided, a font size | |
| proportional to the image width is calculated and used. | |
| color: color of the text. Refer to `matplotlib.colors` for full list | |
| of formats that are accepted. | |
| horizontal_alignment (str): see `matplotlib.text.Text` | |
| rotation: rotation angle in degrees CCW | |
| Returns: | |
| output (VisImage): image object with text drawn. | |
| """ | |
| if not font_size: | |
| font_size = self._default_font_size | |
| # since the text background is dark, we don't want the text to be dark | |
| color = np.maximum(list(mplc.to_rgb(color)), 0.2) | |
| color[np.argmax(color)] = max(0.8, np.max(color)) | |
| x, y = position | |
| self.output.ax.text( | |
| x, | |
| y, | |
| text, | |
| size=font_size * self.output.scale, | |
| family="sans-serif", | |
| bbox={"facecolor": "black", "alpha": 0.8, "pad": 0.7, "edgecolor": "none"}, | |
| verticalalignment="top", | |
| horizontalalignment=horizontal_alignment, | |
| color=color, | |
| zorder=10, | |
| rotation=rotation, | |
| ) | |
| return self.output | |
| def draw_box(self, box_coord, alpha=0.5, edge_color="g", line_style="-"): | |
| """ | |
| Args: | |
| box_coord (tuple): a tuple containing x0, y0, x1, y1 coordinates, where x0 and y0 | |
| are the coordinates of the image's top left corner. x1 and y1 are the | |
| coordinates of the image's bottom right corner. | |
| alpha (float): blending efficient. Smaller values lead to more transparent masks. | |
| edge_color: color of the outline of the box. Refer to `matplotlib.colors` | |
| for full list of formats that are accepted. | |
| line_style (string): the string to use to create the outline of the boxes. | |
| Returns: | |
| output (VisImage): image object with box drawn. | |
| """ | |
| x0, y0, x1, y1 = box_coord | |
| width = x1 - x0 | |
| height = y1 - y0 | |
| linewidth = max(self._default_font_size / 4, 1) | |
| self.output.ax.add_patch( | |
| mpl.patches.Rectangle( | |
| (x0, y0), | |
| width, | |
| height, | |
| fill=False, | |
| edgecolor=edge_color, | |
| linewidth=linewidth * self.output.scale, | |
| alpha=alpha, | |
| linestyle=line_style, | |
| ) | |
| ) | |
| return self.output | |
| def draw_rotated_box_with_label( | |
| self, rotated_box, alpha=0.5, edge_color="g", line_style="-", label=None | |
| ): | |
| """ | |
| Draw a rotated box with label on its top-left corner. | |
| Args: | |
| rotated_box (tuple): a tuple containing (cnt_x, cnt_y, w, h, angle), | |
| where cnt_x and cnt_y are the center coordinates of the box. | |
| w and h are the width and height of the box. angle represents how | |
| many degrees the box is rotated CCW with regard to the 0-degree box. | |
| alpha (float): blending efficient. Smaller values lead to more transparent masks. | |
| edge_color: color of the outline of the box. Refer to `matplotlib.colors` | |
| for full list of formats that are accepted. | |
| line_style (string): the string to use to create the outline of the boxes. | |
| label (string): label for rotated box. It will not be rendered when set to None. | |
| Returns: | |
| output (VisImage): image object with box drawn. | |
| """ | |
| cnt_x, cnt_y, w, h, angle = rotated_box | |
| area = w * h | |
| # use thinner lines when the box is small | |
| linewidth = self._default_font_size / ( | |
| 6 if area < _SMALL_OBJECT_AREA_THRESH * self.output.scale else 3 | |
| ) | |
| theta = angle * math.pi / 180.0 | |
| c = math.cos(theta) | |
| s = math.sin(theta) | |
| rect = [(-w / 2, h / 2), (-w / 2, -h / 2), (w / 2, -h / 2), (w / 2, h / 2)] | |
| # x: left->right ; y: top->down | |
| rotated_rect = [(s * yy + c * xx + cnt_x, c * yy - s * xx + cnt_y) for (xx, yy) in rect] | |
| for k in range(4): | |
| j = (k + 1) % 4 | |
| self.draw_line( | |
| [rotated_rect[k][0], rotated_rect[j][0]], | |
| [rotated_rect[k][1], rotated_rect[j][1]], | |
| color=edge_color, | |
| linestyle="--" if k == 1 else line_style, | |
| linewidth=linewidth, | |
| ) | |
| if label is not None: | |
| text_pos = rotated_rect[1] # topleft corner | |
| height_ratio = h / np.sqrt(self.output.height * self.output.width) | |
| label_color = self._change_color_brightness(edge_color, brightness_factor=0.7) | |
| font_size = ( | |
| np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2) * 0.5 * self._default_font_size | |
| ) | |
| self.draw_text(label, text_pos, color=label_color, font_size=font_size, rotation=angle) | |
| return self.output | |
| def draw_circle(self, circle_coord, color, radius=3): | |
| """ | |
| Args: | |
| circle_coord (list(int) or tuple(int)): contains the x and y coordinates | |
| of the center of the circle. | |
| color: color of the polygon. Refer to `matplotlib.colors` for a full list of | |
| formats that are accepted. | |
| radius (int): radius of the circle. | |
| Returns: | |
| output (VisImage): image object with box drawn. | |
| """ | |
| x, y = circle_coord | |
| self.output.ax.add_patch( | |
| mpl.patches.Circle(circle_coord, radius=radius, fill=True, color=color) | |
| ) | |
| return self.output | |
| def draw_line(self, x_data, y_data, color, linestyle="-", linewidth=None): | |
| """ | |
| Args: | |
| x_data (list[int]): a list containing x values of all the points being drawn. | |
| Length of list should match the length of y_data. | |
| y_data (list[int]): a list containing y values of all the points being drawn. | |
| Length of list should match the length of x_data. | |
| color: color of the line. Refer to `matplotlib.colors` for a full list of | |
| formats that are accepted. | |
| linestyle: style of the line. Refer to `matplotlib.lines.Line2D` | |
| for a full list of formats that are accepted. | |
| linewidth (float or None): width of the line. When it's None, | |
| a default value will be computed and used. | |
| Returns: | |
| output (VisImage): image object with line drawn. | |
| """ | |
| if linewidth is None: | |
| linewidth = self._default_font_size / 3 | |
| linewidth = max(linewidth, 1) | |
| self.output.ax.add_line( | |
| mpl.lines.Line2D( | |
| x_data, | |
| y_data, | |
| linewidth=linewidth * self.output.scale, | |
| color=color, | |
| linestyle=linestyle, | |
| ) | |
| ) | |
| return self.output | |
| def draw_binary_mask( | |
| self, binary_mask, color=None, *, edge_color=None, text=None, alpha=0.5, area_threshold=10 | |
| ): | |
| """ | |
| Args: | |
| binary_mask (ndarray): numpy array of shape (H, W), where H is the image height and | |
| W is the image width. Each value in the array is either a 0 or 1 value of uint8 | |
| type. | |
| color: color of the mask. Refer to `matplotlib.colors` for a full list of | |
| formats that are accepted. If None, will pick a random color. | |
| edge_color: color of the polygon edges. Refer to `matplotlib.colors` for a | |
| full list of formats that are accepted. | |
| text (str): if None, will be drawn on the object | |
| alpha (float): blending efficient. Smaller values lead to more transparent masks. | |
| area_threshold (float): a connected component smaller than this area will not be shown. | |
| Returns: | |
| output (VisImage): image object with mask drawn. | |
| """ | |
| if color is None: | |
| color = random_color(rgb=True, maximum=1) | |
| color = mplc.to_rgb(color) | |
| has_valid_segment = False | |
| binary_mask = binary_mask.astype("uint8") # opencv needs uint8 | |
| mask = GenericMask(binary_mask, self.output.height, self.output.width) | |
| shape2d = (binary_mask.shape[0], binary_mask.shape[1]) | |
| if not mask.has_holes: | |
| # draw polygons for regular masks | |
| for segment in mask.polygons: | |
| area = mask_util.area(mask_util.frPyObjects([segment], shape2d[0], shape2d[1])) | |
| if area < (area_threshold or 0): | |
| continue | |
| has_valid_segment = True | |
| segment = segment.reshape(-1, 2) | |
| self.draw_polygon(segment, color=color, edge_color=edge_color, alpha=alpha) | |
| else: | |
| # TODO: Use Path/PathPatch to draw vector graphics: | |
| # https://stackoverflow.com/questions/8919719/how-to-plot-a-complex-polygon | |
| rgba = np.zeros(shape2d + (4,), dtype="float32") | |
| rgba[:, :, :3] = color | |
| rgba[:, :, 3] = (mask.mask == 1).astype("float32") * alpha | |
| has_valid_segment = True | |
| self.output.ax.imshow(rgba, extent=(0, self.output.width, self.output.height, 0)) | |
| if text is not None and has_valid_segment: | |
| lighter_color = self._change_color_brightness(color, brightness_factor=0.7) | |
| self._draw_text_in_mask(binary_mask, text, lighter_color) | |
| return self.output | |
| def draw_soft_mask(self, soft_mask, color=None, *, text=None, alpha=0.5): | |
| """ | |
| Args: | |
| soft_mask (ndarray): float array of shape (H, W), each value in [0, 1]. | |
| color: color of the mask. Refer to `matplotlib.colors` for a full list of | |
| formats that are accepted. If None, will pick a random color. | |
| text (str): if None, will be drawn on the object | |
| alpha (float): blending efficient. Smaller values lead to more transparent masks. | |
| Returns: | |
| output (VisImage): image object with mask drawn. | |
| """ | |
| if color is None: | |
| color = random_color(rgb=True, maximum=1) | |
| color = mplc.to_rgb(color) | |
| shape2d = (soft_mask.shape[0], soft_mask.shape[1]) | |
| rgba = np.zeros(shape2d + (4,), dtype="float32") | |
| rgba[:, :, :3] = color | |
| rgba[:, :, 3] = soft_mask * alpha | |
| self.output.ax.imshow(rgba, extent=(0, self.output.width, self.output.height, 0)) | |
| if text is not None: | |
| lighter_color = self._change_color_brightness(color, brightness_factor=0.7) | |
| binary_mask = (soft_mask > 0.5).astype("uint8") | |
| self._draw_text_in_mask(binary_mask, text, lighter_color) | |
| return self.output | |
| def draw_polygon(self, segment, color, edge_color=None, alpha=0.5): | |
| """ | |
| Args: | |
| segment: numpy array of shape Nx2, containing all the points in the polygon. | |
| color: color of the polygon. Refer to `matplotlib.colors` for a full list of | |
| formats that are accepted. | |
| edge_color: color of the polygon edges. Refer to `matplotlib.colors` for a | |
| full list of formats that are accepted. If not provided, a darker shade | |
| of the polygon color will be used instead. | |
| alpha (float): blending efficient. Smaller values lead to more transparent masks. | |
| Returns: | |
| output (VisImage): image object with polygon drawn. | |
| """ | |
| if edge_color is None: | |
| # make edge color darker than the polygon color | |
| if alpha > 0.8: | |
| edge_color = self._change_color_brightness(color, brightness_factor=-0.7) | |
| else: | |
| edge_color = color | |
| edge_color = mplc.to_rgb(edge_color) + (1,) | |
| polygon = mpl.patches.Polygon( | |
| segment, | |
| fill=True, | |
| facecolor=mplc.to_rgb(color) + (alpha,), | |
| edgecolor=edge_color, | |
| linewidth=max(self._default_font_size // 15 * self.output.scale, 1), | |
| ) | |
| self.output.ax.add_patch(polygon) | |
| return self.output | |
| """ | |
| Internal methods: | |
| """ | |
| def _jitter(self, color): | |
| """ | |
| Randomly modifies given color to produce a slightly different color than the color given. | |
| Args: | |
| color (tuple[double]): a tuple of 3 elements, containing the RGB values of the color | |
| picked. The values in the list are in the [0.0, 1.0] range. | |
| Returns: | |
| jittered_color (tuple[double]): a tuple of 3 elements, containing the RGB values of the | |
| color after being jittered. The values in the list are in the [0.0, 1.0] range. | |
| """ | |
| color = mplc.to_rgb(color) | |
| vec = np.random.rand(3) | |
| # better to do it in another color space | |
| vec = vec / np.linalg.norm(vec) * 0.5 | |
| res = np.clip(vec + color, 0, 1) | |
| return tuple(res) | |
| def _create_grayscale_image(self, mask=None): | |
| """ | |
| Create a grayscale version of the original image. | |
| The colors in masked area, if given, will be kept. | |
| """ | |
| img_bw = self.img.astype("f4").mean(axis=2) | |
| img_bw = np.stack([img_bw] * 3, axis=2) | |
| if mask is not None: | |
| img_bw[mask] = self.img[mask] | |
| return img_bw | |
| def _change_color_brightness(self, color, brightness_factor): | |
| """ | |
| Depending on the brightness_factor, gives a lighter or darker color i.e. a color with | |
| less or more saturation than the original color. | |
| Args: | |
| color: color of the polygon. Refer to `matplotlib.colors` for a full list of | |
| formats that are accepted. | |
| brightness_factor (float): a value in [-1.0, 1.0] range. A lightness factor of | |
| 0 will correspond to no change, a factor in [-1.0, 0) range will result in | |
| a darker color and a factor in (0, 1.0] range will result in a lighter color. | |
| Returns: | |
| modified_color (tuple[double]): a tuple containing the RGB values of the | |
| modified color. Each value in the tuple is in the [0.0, 1.0] range. | |
| """ | |
| assert brightness_factor >= -1.0 and brightness_factor <= 1.0 | |
| color = mplc.to_rgb(color) | |
| polygon_color = colorsys.rgb_to_hls(*mplc.to_rgb(color)) | |
| modified_lightness = polygon_color[1] + (brightness_factor * polygon_color[1]) | |
| modified_lightness = 0.0 if modified_lightness < 0.0 else modified_lightness | |
| modified_lightness = 1.0 if modified_lightness > 1.0 else modified_lightness | |
| modified_color = colorsys.hls_to_rgb(polygon_color[0], modified_lightness, polygon_color[2]) | |
| return tuple(np.clip(modified_color, 0.0, 1.0)) | |
| def _convert_boxes(self, boxes): | |
| """ | |
| Convert different format of boxes to an NxB array, where B = 4 or 5 is the box dimension. | |
| """ | |
| if isinstance(boxes, Boxes) or isinstance(boxes, RotatedBoxes): | |
| return boxes.tensor.detach().numpy() | |
| else: | |
| return np.asarray(boxes) | |
| def _convert_masks(self, masks_or_polygons): | |
| """ | |
| Convert different format of masks or polygons to a tuple of masks and polygons. | |
| Returns: | |
| list[GenericMask]: | |
| """ | |
| m = masks_or_polygons | |
| if isinstance(m, PolygonMasks): | |
| m = m.polygons | |
| if isinstance(m, BitMasks): | |
| m = m.tensor.numpy() | |
| if isinstance(m, torch.Tensor): | |
| m = m.numpy() | |
| ret = [] | |
| for x in m: | |
| if isinstance(x, GenericMask): | |
| ret.append(x) | |
| else: | |
| ret.append(GenericMask(x, self.output.height, self.output.width)) | |
| return ret | |
| def _draw_text_in_mask(self, binary_mask, text, color): | |
| """ | |
| Find proper places to draw text given a binary mask. | |
| """ | |
| # TODO sometimes drawn on wrong objects. the heuristics here can improve. | |
| _num_cc, cc_labels, stats, centroids = cv2.connectedComponentsWithStats(binary_mask, 8) | |
| if stats[1:, -1].size == 0: | |
| return | |
| largest_component_id = np.argmax(stats[1:, -1]) + 1 | |
| # draw text on the largest component, as well as other very large components. | |
| for cid in range(1, _num_cc): | |
| if cid == largest_component_id or stats[cid, -1] > _LARGE_MASK_AREA_THRESH: | |
| # median is more stable than centroid | |
| # center = centroids[largest_component_id] | |
| center = np.median((cc_labels == cid).nonzero(), axis=1)[::-1] | |
| self.draw_text(text, center, color=color) | |
| def _convert_keypoints(self, keypoints): | |
| if isinstance(keypoints, Keypoints): | |
| keypoints = keypoints.tensor | |
| keypoints = np.asarray(keypoints) | |
| return keypoints | |
| def get_output(self): | |
| """ | |
| Returns: | |
| output (VisImage): the image output containing the visualizations added | |
| to the image. | |
| """ | |
| return self.output | |