Upload predict.py
Browse files- predict.py +126 -0
predict.py
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import time
|
| 3 |
+
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
|
| 4 |
+
from multiprocessing import cpu_count
|
| 5 |
+
|
| 6 |
+
from transformers import (
|
| 7 |
+
AutoConfig,
|
| 8 |
+
AutoModelForQuestionAnswering,
|
| 9 |
+
AutoTokenizer,
|
| 10 |
+
squad_convert_examples_to_features
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
from transformers.data.processors.squad import SquadResult, SquadV2Processor, SquadExample
|
| 14 |
+
from transformers.data.metrics.squad_metrics import compute_predictions_logits
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def run_prediction(question_texts, context_text, model_path, n_best_size=1):
|
| 18 |
+
max_seq_length = 512
|
| 19 |
+
doc_stride = 256
|
| 20 |
+
n_best_size = n_best_size
|
| 21 |
+
max_query_length = 64
|
| 22 |
+
max_answer_length = 512
|
| 23 |
+
do_lower_case = False
|
| 24 |
+
null_score_diff_threshold = 0.0
|
| 25 |
+
|
| 26 |
+
def to_list(tensor):
|
| 27 |
+
return tensor.detach().cpu().tolist()
|
| 28 |
+
|
| 29 |
+
config_class, model_class, tokenizer_class = (AutoConfig, AutoModelForQuestionAnswering, AutoTokenizer)
|
| 30 |
+
config = config_class.from_pretrained(model_path)
|
| 31 |
+
tokenizer = tokenizer_class.from_pretrained(model_path, do_lower_case=True, use_fast=False)
|
| 32 |
+
model = model_class.from_pretrained(model_path, config=config)
|
| 33 |
+
|
| 34 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 35 |
+
model.to(device)
|
| 36 |
+
|
| 37 |
+
processor = SquadV2Processor()
|
| 38 |
+
examples = []
|
| 39 |
+
|
| 40 |
+
timer = time.time()
|
| 41 |
+
for i, question_text in enumerate(question_texts):
|
| 42 |
+
|
| 43 |
+
example = SquadExample(
|
| 44 |
+
qas_id=str(i),
|
| 45 |
+
question_text=question_text,
|
| 46 |
+
context_text=context_text,
|
| 47 |
+
answer_text=None,
|
| 48 |
+
start_position_character=None,
|
| 49 |
+
title="Predict",
|
| 50 |
+
answers=None,
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
examples.append(example)
|
| 54 |
+
print(f'Created Squad Examples in {time.time()-timer} seconds')
|
| 55 |
+
|
| 56 |
+
print(f'Number of CPUs: {cpu_count()}')
|
| 57 |
+
timer = time.time()
|
| 58 |
+
features, dataset = squad_convert_examples_to_features(
|
| 59 |
+
examples=examples,
|
| 60 |
+
tokenizer=tokenizer,
|
| 61 |
+
max_seq_length=max_seq_length,
|
| 62 |
+
doc_stride=doc_stride,
|
| 63 |
+
max_query_length=max_query_length,
|
| 64 |
+
is_training=False,
|
| 65 |
+
return_dataset="pt",
|
| 66 |
+
threads=cpu_count(),
|
| 67 |
+
)
|
| 68 |
+
print(f'Converted Examples to Features in {time.time()-timer} seconds')
|
| 69 |
+
|
| 70 |
+
eval_sampler = SequentialSampler(dataset)
|
| 71 |
+
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=10)
|
| 72 |
+
|
| 73 |
+
all_results = []
|
| 74 |
+
|
| 75 |
+
timer = time.time()
|
| 76 |
+
for batch in eval_dataloader:
|
| 77 |
+
model.eval()
|
| 78 |
+
batch = tuple(t.to(device) for t in batch)
|
| 79 |
+
|
| 80 |
+
with torch.no_grad():
|
| 81 |
+
inputs = {
|
| 82 |
+
"input_ids": batch[0],
|
| 83 |
+
"attention_mask": batch[1],
|
| 84 |
+
"token_type_ids": batch[2],
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
+
example_indices = batch[3]
|
| 88 |
+
|
| 89 |
+
outputs = model(**inputs)
|
| 90 |
+
|
| 91 |
+
for i, example_index in enumerate(example_indices):
|
| 92 |
+
eval_feature = features[example_index.item()]
|
| 93 |
+
unique_id = int(eval_feature.unique_id)
|
| 94 |
+
|
| 95 |
+
output = [to_list(output[i]) for output in outputs.to_tuple()]
|
| 96 |
+
|
| 97 |
+
start_logits, end_logits = output
|
| 98 |
+
result = SquadResult(unique_id, start_logits, end_logits)
|
| 99 |
+
all_results.append(result)
|
| 100 |
+
print(f'Model predictions completed in {time.time()-timer} seconds')
|
| 101 |
+
|
| 102 |
+
print(all_results)
|
| 103 |
+
|
| 104 |
+
output_nbest_file = None
|
| 105 |
+
if n_best_size > 1:
|
| 106 |
+
output_nbest_file = "nbest.json"
|
| 107 |
+
|
| 108 |
+
timer = time.time()
|
| 109 |
+
final_predictions = compute_predictions_logits(
|
| 110 |
+
all_examples=examples,
|
| 111 |
+
all_features=features,
|
| 112 |
+
all_results=all_results,
|
| 113 |
+
n_best_size=n_best_size,
|
| 114 |
+
max_answer_length=max_answer_length,
|
| 115 |
+
do_lower_case=do_lower_case,
|
| 116 |
+
output_prediction_file=None,
|
| 117 |
+
output_nbest_file=output_nbest_file,
|
| 118 |
+
output_null_log_odds_file=None,
|
| 119 |
+
verbose_logging=False,
|
| 120 |
+
version_2_with_negative=True,
|
| 121 |
+
null_score_diff_threshold=null_score_diff_threshold,
|
| 122 |
+
tokenizer=tokenizer
|
| 123 |
+
)
|
| 124 |
+
print(f'Logits converted to predictions in {time.time()-timer} seconds')
|
| 125 |
+
|
| 126 |
+
return final_predictions
|