File size: 20,065 Bytes
536604a
 
26242a6
536604a
 
c19fc55
536604a
26242a6
536604a
 
 
 
 
307dbcd
26242a6
 
 
 
 
 
 
04c7f03
 
26242a6
 
 
04c7f03
 
946720d
04c7f03
536604a
26242a6
04c7f03
26242a6
 
 
 
 
536604a
 
 
04c7f03
 
536604a
26242a6
536604a
c19fc55
26242a6
536604a
 
 
26242a6
 
 
536604a
 
 
26242a6
04c7f03
536604a
 
 
 
 
 
 
 
26242a6
 
 
 
536604a
 
 
26242a6
536604a
26242a6
 
449a735
04c7f03
536604a
 
 
04c7f03
536604a
26242a6
 
 
 
 
 
04c7f03
536604a
26242a6
536604a
 
 
 
 
449a735
04c7f03
536604a
 
26242a6
 
 
536604a
c8630b4
26242a6
 
 
946720d
26242a6
 
536604a
26242a6
 
 
 
 
 
 
 
536604a
 
04c7f03
536604a
04c7f03
26242a6
536604a
 
 
26242a6
 
 
 
 
 
 
536604a
 
26242a6
536604a
26242a6
536604a
26242a6
536604a
26242a6
536604a
04c7f03
536604a
 
 
 
 
26242a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
536604a
26242a6
 
 
 
 
 
536604a
26242a6
 
 
 
 
 
 
 
04c7f03
26242a6
 
 
 
536604a
 
26242a6
 
 
 
 
 
04c7f03
26242a6
 
 
 
 
 
 
 
 
 
 
04c7f03
26242a6
 
04c7f03
26242a6
 
 
 
 
 
 
 
 
 
04c7f03
26242a6
04c7f03
26242a6
04c7f03
26242a6
 
04c7f03
 
26242a6
 
 
 
 
 
 
04c7f03
 
26242a6
04c7f03
26242a6
04c7f03
26242a6
04c7f03
 
 
 
c19fc55
 
536604a
04c7f03
26242a6
04c7f03
26242a6
04c7f03
946720d
26242a6
536604a
04c7f03
26242a6
 
71d9e1e
26242a6
536604a
26242a6
 
 
536604a
26242a6
536604a
 
 
04c7f03
26242a6
 
 
04c7f03
 
26242a6
04c7f03
26242a6
536604a
26242a6
536604a
26242a6
04c7f03
536604a
26242a6
 
 
 
04c7f03
 
536604a
04c7f03
26242a6
536604a
04c7f03
 
 
 
26242a6
536604a
 
26242a6
 
536604a
04c7f03
26242a6
 
04c7f03
26242a6
536604a
 
26242a6
 
 
536604a
04c7f03
26242a6
04c7f03
26242a6
536604a
26242a6
536604a
04c7f03
26242a6
04c7f03
 
 
 
26242a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
536604a
26242a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
536604a
26242a6
 
 
 
 
04c7f03
536604a
04c7f03
26242a6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
import os
import json
import re
import random
import datetime
from flask import Flask, request, jsonify, send_from_directory

# Try optional packages
try:
    from transformers import pipeline
    HF_AVAILABLE = True
except Exception:
    HF_AVAILABLE = False

try:
    import requests
    REQ_AVAILABLE = True
except Exception:
    REQ_AVAILABLE = False

# Optional OpenAI usage for richer replies
try:
    import openai
    OPENAI_AVAILABLE = bool(os.environ.get("OPENAI_API_KEY"))
    if OPENAI_AVAILABLE:
        openai.api_key = os.environ.get("OPENAI_API_KEY")
except Exception:
    OPENAI_AVAILABLE = False

app = Flask(__name__, static_folder=".", static_url_path="/")

# ---------- Config ----------
MEMORY_FILE = "session_memory.json"
MEMORY_RETENTION_DAYS = 15
CRISIS_TERMS = [
    "suicide", "kill myself", "end my life", "i want to die", "hurt myself",
    "can't go on", "cant go on", "i don't want to live", "i dont want to live"
]
HELPLINES = {
    "IN": "🇮🇳 India: AASRA Helpline 91-9820466726",
    "US": "🇺🇸 USA: Call or text 988 (Suicide & Crisis Lifeline)",
    "GB": "🇬🇧 UK: Samaritans 116 123",
    "CA": "🇨🇦 Canada: Talk Suicide Canada 1-833-456-4566",
    "AU": "🇦🇺 Australia: Lifeline 13 11 14",
    "DEFAULT": "If you are in crisis, please contact your local emergency number or visit https://findahelpline.com"
}

# ---------- Optional HF emotion model (heavy) ----------
emotion_model = None
if HF_AVAILABLE:
    try:
        emotion_model = pipeline("text-classification",
                                 model="j-hartmann/emotion-english-distilroberta-base",
                                 top_k=5)
    except Exception:
        emotion_model = None

# ---------- Memory helpers ----------
def load_memory():
    if os.path.exists(MEMORY_FILE):
        try:
            with open(MEMORY_FILE, "r") as f:
                data = json.load(f)
        except Exception:
            data = {}
    else:
        data = {}
    # prune old
    cutoff = datetime.datetime.utcnow() - datetime.timedelta(days=MEMORY_RETENTION_DAYS)
    keep = {}
    for k, v in data.items():
        try:
            t = datetime.datetime.fromisoformat(v.get("last_seen"))
            if t >= cutoff:
                keep[k] = v
        except Exception:
            keep[k] = v
    return keep

def save_memory(mem):
    with open(MEMORY_FILE, "w") as f:
        json.dump(mem, f, indent=2)

memory = load_memory()

# ---------- small NLP helpers ----------
name_patterns = [
    r"^(?:i am|i'm|im|i’m)\s+([A-Za-z][A-Za-z '-]{1,40})",
    r"my name is\s+([A-Za-z][A-Za-z '-]{1,40})",
    r"^([A-Z][a-z]{1,30})$"
]
def extract_name(text):
    text = text.strip()
    for p in name_patterns:
        m = re.search(p, text, flags=re.IGNORECASE)
        if m:
            name = m.group(1).strip()
            return " ".join([w.capitalize() for w in name.split()])
    return None

def extract_age(text):
    nums = re.findall(r"\b([1-9][0-9]?)\b", text)
    for n in nums:
        v = int(n)
        if 8 <= v <= 120:
            return v
    return None

def is_crisis(text):
    low = text.lower()
    return any(term in low for term in CRISIS_TERMS)

def helpline_for_request(remote_addr):
    # best-effort country lookup via ipapi
    try:
        if REQ_AVAILABLE:
            ip = remote_addr if remote_addr and ":" not in remote_addr else ""
            url = "https://ipapi.co/json/" if not ip else f"https://ipapi.co/{ip}/json/"
            r = requests.get(url, timeout=2)
            if r.status_code == 200:
                data = r.json()
                code = data.get("country_code", "").upper()
                return HELPLINES.get(code, HELPLINES["DEFAULT"])
    except Exception:
        pass
    return HELPLINES["DEFAULT"]

def classify_emotion(text):
    # Try HF if available
    if emotion_model:
        try:
            out = emotion_model(text)
            # pipeline returns list or list of lists; get top label
            first = out[0]
            if isinstance(first, list):
                label = first[0]["label"]
            else:
                label = first["label"]
            return label.lower()
        except Exception:
            pass
    # fallback heuristics
    low = text.lower()
    if any(w in low for w in ["happy","glad","joy","great","good","awesome","fine"]):
        return "joy"
    if any(w in low for w in ["sad","down","depressed","unhappy","lonely","cry","miserable"]):
        return "sadness"
    if any(w in low for w in ["angry","mad","furious","annoyed","irritat"]):
        return "anger"
    if any(w in low for w in ["scared","afraid","anxious","panic","worried"]):
        return "fear"
    if any(w in low for w in ["love","loving","cherish","fond"]):
        return "love"
    return "neutral"

# ---------- Intent detection (simple rules) ----------
def detect_intent(text):
    t = text.lower().strip()
    # Crisis
    if is_crisis(t):
        return "CRISIS"
    # Asking about bot
    if any(q in t for q in ["how are you", "how're you", "how r you", "how you doing", "are you okay", "are you mad", "are you upset", "are you mad?"]):
        return "QUESTION_ABOUT_BOT"
    # Requests for motivation/guidance
    if any(w in t for w in ["motivate", "motivation", "guidance", "inspire", "give me guidance", "need motivation", "help me be motivated"]):
        return "REQUEST_MOTIVATION"
    # Casual chit-chat / teasing / slang
    if any(w in t for w in ["lol","haha","hahaha","jk","bro","dude","whats up","what's up","have you gone mad","are you mad","r u mad","you mad"]):
        return "CASUAL"
    # If user mentions feelings -> support
    if any(w in t for w in ["sad","down","depressed","anxious","anxiety","lonely","hurt","upset","tired","stressed","stressing","stress"]):
        return "SUPPORT"
    # Else neutral casual fallback for short utterances
    if len(t.split()) <= 6:
        return "CASUAL"
    return "SUPPORT"  # prefer support for longer introspective messages

# ---------- Non-repetitive response manager ----------
def pick_nonrepetitive(session_slot, bucket):
    """Pick a reply from bucket avoiding recent repeats stored in session_slot['recent_replies']"""
    recent = session_slot.get("recent_replies", [])
    choices = [x for x in bucket if x not in recent]
    if not choices:
        # all used recently — clear memory a bit and reuse
        session_slot["recent_replies"] = []
        choices = bucket[:]
    pick = random.choice(choices)
    # append to recent (keep last 6)
    recent.insert(0, pick)
    session_slot["recent_replies"] = recent[:6]
    return pick

# ---------- Reply templates ----------
CASUAL_REPLY_TEMPLATES = [
    "Haha, you crack me up — tell me more!",
    "Oh wow, that’s a curveball 😄 What made you say that?",
    "I’m here and very curious — go on.",
    "Haha, I might be a little wired but never mad — what's up?",
    "I love that energy. Want to tell me more about it?",
    "You’re funny — but seriously, how are you really?",
    "Haha, okay I see you. What else?"
]

SUPPORT_OPENERS = [
    "That sounds heavy — thank you for trusting me with that.",
    "I can feel how much that impacted you. I'm listening.",
    "You handled a lot there; I'm glad you told me.",
    "That must have been difficult. Tell me more, if you want."
]

SUPPORT_FOLLOWUPS = [
    "Would you like to talk about what might help a little today?",
    "How has this been affecting your daily life?",
    "What usually helps you when things feel this way?",
    "Would you prefer a calming exercise or a few practical steps?"
]

MOTIVATIONAL_SNIPPETS = [
    "Even small steps count — you don't need to fix everything at once.",
    "You’ve come so far already. One gentle step at a time.",
    "Rest is allowed. Healing isn’t a straight line.",
    "Breathe — you’re doing better than you think."
]

BOT_SELF_REPLIES = [
    "I'm doing well — talking to you brightens my loop! How about you?",
    "Feeling calm and ready to listen — how are you today?",
    "I’m good! Just here with an open ear for you.",
    "Doing okay — I was thinking about how to support you better. What’s up?"
]

# ---------- OpenAI prompt builder (for mixed persona) ----------
PERSONA_TEXT = {
    "calm_male": "A calm masculine-tone voice: steady, grounding, gentle; use short reassuring phrases.",
    "deep_male": "A deep male-tone: slow, resonant, and calming.",
    "soothing_male": "A soothing male-tone: mellow and kind.",
    "gentle_female": "A gentle female-tone: tender and nurturing.",
    "feminine_female": "A bright feminine-tone: warm and encouraging.",
    "deep_female": "A deeper female-tone: soulful and empathetic.",
    "soothing_female": "A soothing female-tone: calm and steady.",
    "neutral": "A neutral friendly-tone: balanced, soft, non-gendered."
}

def build_openai_prompt(personality_id, session_slot):
    persona = PERSONA_TEXT.get(personality_id, PERSONA_TEXT["neutral"])
    memory_note = ""
    if session_slot.get("name"):
        memory_note += f" The user is named {session_slot.get('name')}."
    if session_slot.get("last_mood"):
        memory_note += f" Recent mood: {session_slot.get('last_mood')}."
    system = (
        "You are Serenity, a warm compassionate emotional support companion. "
        "Be empathetic, avoid repeating the same short phrases like 'I understand', and vary vocabulary. "
        "Keep replies concise when the user seems distressed; be chatty when the user is casual. "
        + persona + memory_note
        + " If user asks casual questions about you, answer briefly and pivot back to supporting the user."
    )
    return system

def openai_reply(user_message, personality_id, session_slot):
    if not OPENAI_AVAILABLE:
        return None
    system_prompt = build_openai_prompt(personality_id, session_slot)
    try:
        resp = openai.ChatCompletion.create(
            model = os.environ.get("OPENAI_MODEL", "gpt-4o-mini"),
            messages = [
                {"role":"system", "content": system_prompt},
                {"role":"user", "content": user_message}
            ],
            temperature = 0.85,
            max_tokens = 350
        )
        text = resp.choices[0].message.content.strip()
        return text
    except Exception:
        return None

# ---------- Routes ----------
@app.route("/")
def index():
    return send_from_directory(".", "index.html")

@app.route("/chat", methods=["POST"])
def chat():
    global memory
    data = request.get_json() or {}
    session = data.get("session") or request.remote_addr or "default_session"
    message = (data.get("message") or "").strip()
    personality = (data.get("personality") or data.get("voice_profile") or "neutral")
    init_flag = data.get("init", False)

    # ensure slot exists
    slot = memory.get(session, {})
    now = datetime.datetime.utcnow().isoformat()
    if not slot:
        slot = {"name": None, "age": None, "last_mood": None, "last_seen": now, "recent_replies": [], "history": []}

    # If init requested, send greeting or follow-up
    if init_flag:
        slot["last_seen"] = now
        memory[session] = slot
        save_memory(memory)
        if not slot.get("name"):
            return jsonify({"reply":"Hey — I'm Serenity. What's your name?", "emotion":"calm", "intent":"INIT"})
        else:
            last_mood = slot.get("last_mood")
            last_seen = slot.get("last_seen")
            try:
                t = datetime.datetime.fromisoformat(last_seen)
                if last_mood in ("sadness","anger","fear") and (datetime.datetime.utcnow() - t).days <= MEMORY_RETENTION_DAYS:
                    return jsonify({"reply":f"Hey {slot.get('name')}, I remember you were feeling down last time. How are you today?", "emotion":"warm", "intent":"FOLLOWUP"})
            except Exception:
                pass
            return jsonify({"reply":f"Welcome back {slot.get('name')} — what’s on your mind?", "emotion":"calm", "intent":"INIT"})

    # If empty message
    if not message:
        return jsonify({"reply":"I'm here — whenever you're ready, tell me what's on your mind.", "emotion":"neutral", "intent":"NONE"})

    # Handle awaiting name/age
    awaiting = slot.get("awaiting")
    if not slot.get("name") and not awaiting:
        # try to extract name
        name = extract_name(message)
        if name:
            slot["name"] = name
            slot["awaiting"] = "age"
            slot["last_seen"] = now
            memory[session] = slot
            save_memory(memory)
            return jsonify({"reply":f"Nice to meet you, {name}! How old are you?", "emotion":"curious", "intent":"ASK_AGE"})
        else:
            slot["awaiting"] = "name"
            slot["last_seen"] = now
            memory[session] = slot
            save_memory(memory)
            return jsonify({"reply":"Hey — what should I call you? What's your name?", "emotion":"calm", "intent":"ASK_NAME"})

    if awaiting == "name":
        guessed = extract_name(message) or message.split()[0].capitalize()
        slot["name"] = guessed
        slot.pop("awaiting", None)
        slot["awaiting"] = "age"
        slot["last_seen"] = now
        memory[session] = slot
        save_memory(memory)
        return jsonify({"reply":f"Lovely, {guessed}. How old are you?", "emotion":"curious", "intent":"ASK_AGE"})

    if awaiting == "age":
        age = extract_age(message)
        if age:
            slot["age"] = age
            slot.pop("awaiting", None)
            slot["last_seen"] = now
            memory[session] = slot
            save_memory(memory)
            return jsonify({"reply":f"Thanks. {slot.get('name')}, how have you been feeling lately?", "emotion":"curious", "intent":"ASK_MOOD"})
        else:
            return jsonify({"reply":"Could you tell me your age as a number (for example, 24)?", "emotion":"neutral", "intent":"ASK_AGE"})

    # Crisis detection
    if is_crisis(message):
        slot["last_mood"] = "crisis"
        slot["last_seen"] = now
        memory[session] = slot
        save_memory(memory)
        helpline = helpline_for_request(request.remote_addr)
        reply = f"I’m really concerned about how you're feeling. You are not alone. Please consider contacting emergency services or this helpline: {helpline}"
        return jsonify({"reply":reply, "emotion":"crisis", "intent":"CRISIS"})

    # Detect intent
    intent = detect_intent(message)

    # If user asks about the bot (casual)
    if intent == "QUESTION_ABOUT_BOT":
        # friendly, human-like small talk (Option A)
        bot_reply = random.choice(BOT_SELF_REPLIES)
        # briefly ask how user is to pivot back
        pivot = random.choice(["How are you doing right now?", "And how about you?"])
        reply = f"{bot_reply} {pivot}"
        # update memory and return
        slot["last_mood"] = classify_emotion(message)
        slot["last_seen"] = now
        memory[session] = slot
        save_memory(memory)
        return jsonify({"reply": reply, "emotion": slot["last_mood"], "intent": "QUESTION_ABOUT_BOT"})

    # If casual intent -> casual friendly replies (Option A)
    if intent == "CASUAL":
        # Use OpenAI if available to make it more natural
        if OPENAI_AVAILABLE:
            o = openai_reply := openai_reply = None
            # Use a short, casual prompt
            try:
                system = ("You are a friendly, informal companion. Answer casually, with light humor when appropriate, "
                          "be brief and natural. Avoid repeating previous phrasing. If the user is distressed, shift to empathy.")
                resp = openai.ChatCompletion.create(
                    model = os.environ.get("OPENAI_MODEL","gpt-4o-mini"),
                    messages = [
                        {"role":"system", "content": system},
                        {"role":"user", "content": message}
                    ],
                    temperature = 0.8,
                    max_tokens = 150
                )
                text = resp.choices[0].message.content.strip()
                # little safety: if the AI returns a generic empathetic one-liner only, diversify
                if text.lower() in ("i understand", "i see", "okay"):
                    text = pick_nonrepetitive(slot, CASUAL_REPLY_TEMPLATES)
                slot["last_mood"] = classify_emotion(message)
                slot["last_seen"] = now
                # store reply to avoid repetition
                slot.setdefault("recent_replies", [])
                slot["recent_replies"].insert(0, text)
                slot["recent_replies"] = slot["recent_replies"][:6]
                slot.setdefault("history", []).append({"in": message, "out": text, "time": now, "intent": intent})
                slot["history"] = slot["history"][-40:]
                memory[session] = slot
                save_memory(memory)
                return jsonify({"reply": text, "emotion": slot["last_mood"], "intent": intent})
            except Exception:
                # fallback to templates
                text = pick_nonrepetitive(slot, CASUAL_REPLY_TEMPLATES)
                slot["last_mood"] = classify_emotion(message)
                slot["last_seen"] = now
                memory[session] = slot
                save_memory(memory)
                return jsonify({"reply": text, "emotion": slot["last_mood"], "intent": intent})
        else:
            text = pick_nonrepetitive(slot, CASUAL_REPLY_TEMPLATES)
            slot["last_mood"] = classify_emotion(message)
            slot["last_seen"] = now
            memory[session] = slot
            save_memory(memory)
            return jsonify({"reply": text, "emotion": slot["last_mood"], "intent": intent})

    # Request motivation
    if intent == "REQUEST_MOTIVATION":
        reply = pick_nonrepetitive(slot, MOTIVATIONAL_SNIPPETS)
        slot["last_mood"] = classify_emotion(message)
        slot["last_seen"] = now
        memory[session] = slot
        save_memory(memory)
        return jsonify({"reply": reply, "emotion": slot["last_mood"], "intent": intent})

    # Support (default)
    # Try OpenAI with persona if available
    if OPENAI_AVAILABLE:
        ai_text = openai_reply(message, personality, slot)
        if ai_text:
            # avoid robotic single-line responses
            if ai_text.strip().lower() in ("i understand","i see","okay","i'm sorry to hear that"):
                ai_text = pick_nonrepetitive(slot, SUPPORT_OPENERS)
            emotion = classify_emotion(message)
            slot["last_mood"] = emotion
            slot.setdefault("recent_replies", [])
            slot["recent_replies"].insert(0, ai_text)
            slot["recent_replies"] = slot["recent_replies"][:6]
            slot.setdefault("history", []).append({"in": message, "out": ai_text, "time": now, "intent": intent})
            slot["history"] = slot["history"][-40:]
            slot["last_seen"] = now
            memory[session] = slot
            save_memory(memory)
            return jsonify({"reply": ai_text, "emotion": emotion, "intent": intent})
        # else fall through to template fallback

    # Fallback supportive templated reply
    opener = pick_nonrepetitive(slot, SUPPORT_OPENERS)
    follow = pick_nonrepetitive(slot, SUPPORT_FOLLOWUPS)
    # Mix small chance for motivational hint
    if random.random() < 0.35:
        reply = f"{opener} {random.choice(MOTIVATIONAL_SNIPPETS)} {follow}"
    else:
        reply = f"{opener} {follow}"
    emotion = classify_emotion(message)
    slot["last_mood"] = emotion
    slot.setdefault("recent_replies", [])
    slot["recent_replies"].insert(0, reply)
    slot["recent_replies"] = slot["recent_replies"][:6]
    slot.setdefault("history", []).append({"in": message, "out": reply, "time": now, "intent": intent})
    slot["history"] = slot["history"][-40:]
    slot["last_seen"] = now
    memory[session] = slot
    save_memory(memory)
    return jsonify({"reply": reply, "emotion":