Spaces:
Runtime error
Runtime error
File size: 5,055 Bytes
1bc072e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import gradio as gr
import openai
import os
import json
import random
import requests
from transformers import pipeline
from datetime import datetime
# --- Setup ---
openai.api_key = os.getenv("OPENAI_API_KEY")
emotion_classifier = pipeline("text-classification",
model="j-hartmann/emotion-english-distilroberta-base")
USER_FILE = "user_data.json"
QUOTE_API = "https://api.quotable.io/random"
LOCAL_QUOTES = [
"Every sunrise brings new hope. Keep shining.",
"You are capable of more than you realize.",
"Each step, no matter how small, is progress.",
"Difficult roads often lead to beautiful destinations.",
"The best time for new beginnings is now.",
"Your inner light never fades—let it guide you."
]
# --- Helper functions ---
def load_user_data():
if os.path.exists(USER_FILE):
with open(USER_FILE, "r") as f:
return json.load(f)
return {}
def save_user_data(data):
with open(USER_FILE, "w") as f:
json.dump(data, f, indent=2)
def fetch_quote():
try:
r = requests.get(QUOTE_API, timeout=5)
if r.status_code == 200:
q = r.json()
return f"“{q['content']}” — {q['author']}"
except Exception:
pass
return random.choice(LOCAL_QUOTES)
def classify_emotion(text):
try:
result = emotion_classifier(text)
return result[0]["label"].lower()
except Exception:
return "neutral"
def get_color_for_emotion(e):
palette = {
"happy": "#fff59d",
"joy": "#fff59d",
"sad": "#90caf9",
"angry": "#ff8a65",
"calm": "#a5d6a7",
"motivated": "#ffcc80",
"neutral": "#eeeeee",
}
return palette.get(e.lower(), "#f5f5f5")
# --- Core logic ---
def chat_with_bot(message, name, age, audio=None):
if not message and audio:
# if user spoke instead of typed
import speech_recognition as sr
recognizer = sr.Recognizer()
with sr.AudioFile(audio) as src:
audio_data = recognizer.record(src)
try:
message = recognizer.recognize_google(audio_data)
except Exception:
message = "..."
if not message:
return "Please say or type something.", None, None
user_id = "default"
users = load_user_data()
user = users.get(user_id, {"name": name, "age": age, "recent_mood": "neutral"})
emotion = classify_emotion(message)
# Motivational triggers
if "motivate" in message.lower() or "guidance" in message.lower():
quote = fetch_quote()
user["recent_mood"] = "motivated"
users[user_id] = user
save_user_data(users)
return quote, None, get_color_for_emotion("motivated")
# Normal empathetic reply
prompt = f"""
You are a warm, empathetic emotional support companion.
The user's name is {name}, age {age}, currently feeling {emotion}.
Reply with kindness, encouragement, and positivity.
Avoid therapy or diagnosis.
User: {message}
Assistant:
"""
try:
response = openai.ChatCompletion.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": prompt}],
temperature=0.8
)
reply = response.choices[0].message["content"].strip()
except Exception:
reply = "I'm here for you. Tell me how you’re feeling today."
# Save user state
user["recent_mood"] = emotion
user["last_active"] = datetime.utcnow().strftime("%Y-%m-%d")
users[user_id] = user
save_user_data(users)
return reply, reply, get_color_for_emotion(emotion)
# --- Gradio UI ---
with gr.Blocks(title="Empathetic Voice Chatbot 🌼") as app:
gr.Markdown(
"## 🌼 Empathetic Voice Chatbot\n"
"Speak or type your feelings — your friendly listener will respond with warmth and understanding."
)
with gr.Row():
name = gr.Textbox(label="Your Name", value="Alex")
age = gr.Number(label="Your Age", value=25)
chatbox = gr.Textbox(label="Type your message", placeholder="Say something or click record below...")
mic = gr.Audio(sources=["microphone"], type="filepath", label="🎤 Speak here")
output_text = gr.Textbox(label="Assistant's Response")
audio_reply = gr.Audio(label="🔊 Spoken Reply")
send_btn = gr.Button("Send / Talk 💬")
def respond(msg, n, a, aud):
text_reply, tts_text, color = chat_with_bot(msg, n, a, aud)
if tts_text:
speech = openai.audio.speech.with_streaming_response.create(
model="gpt-4o-mini-tts",
voice="alloy",
input=tts_text
)
out_path = "reply.mp3"
with open(out_path, "wb") as f:
f.write(speech.read())
else:
out_path = None
# Dynamically change background color
app.theme = None
return gr.update(value=text_reply), out_path
send_btn.click(respond, [chatbox, name, age, mic], [output_text, audio_reply])
app.launch() |