Spaces:
Sleeping
Sleeping
| import os | |
| import logging | |
| from huggingface_hub import InferenceClient | |
| import gradio as gr | |
| from requests.exceptions import ConnectionError | |
| # Configure logging | |
| logging.basicConfig(level=logging.INFO) | |
| logger = logging.getLogger(__name__) | |
| # Initialize the Hugging Face Inference Client | |
| try: | |
| client = InferenceClient( | |
| model="mistralai/Mistral-7B-Instruct-v0.3", | |
| token=os.getenv("HF_TOKEN"), # Ensure HF_TOKEN is set in your environment | |
| timeout=30, | |
| ) | |
| except Exception as e: | |
| logger.error(f"Failed to initialize InferenceClient: {e}") | |
| raise | |
| def format_prompt(message, history): | |
| prompt = "<s>" | |
| for user_prompt, bot_response in history: | |
| prompt += f"[INST] {user_prompt} [/INST]" | |
| prompt += f" {bot_response}</s> " | |
| prompt += f"[INST] {message} [/INST]" | |
| return prompt | |
| def generate( | |
| prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, | |
| ): | |
| try: | |
| temperature = float(temperature) | |
| if temperature < 1e-2: | |
| temperature = 1e-2 | |
| top_p = float(top_p) | |
| generate_kwargs = dict( | |
| temperature=temperature, | |
| max_new_tokens=max_new_tokens, | |
| top_p=top_p, | |
| repetition_penalty=repetition_penalty, | |
| do_sample=True, | |
| seed=42, | |
| ) | |
| formatted_prompt = format_prompt(prompt, history) | |
| logger.info("Sending request to Hugging Face API") | |
| stream = client.text_generation( | |
| formatted_prompt, | |
| **generate_kwargs, | |
| stream=True, | |
| details=True, | |
| return_full_text=False, | |
| ) | |
| output = "" | |
| for response in stream: | |
| output += response.token.text | |
| yield output | |
| return output | |
| except ConnectionError as e: | |
| logger.error(f"Network error: {e}") | |
| yield "Error: Unable to connect to the Hugging Face API. Please check your internet connection and try again." | |
| except Exception as e: | |
| logger.error(f"Error during text generation: {e}") | |
| yield f"Error: {str(e)}" | |
| # Define additional inputs for Gradio interface | |
| additional_inputs = [ | |
| gr.Slider( | |
| label="Temperature", | |
| value=0.9, | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.05, | |
| interactive=True, | |
| info="Higher values produce more diverse outputs", | |
| ), | |
| gr.Slider( | |
| label="Max new tokens", | |
| value=512, | |
| minimum=0, | |
| maximum=1048, | |
| step=64, | |
| interactive=True, | |
| info="The maximum number of new tokens", | |
| ), | |
| gr.Slider( | |
| label="Top-p (nucleus sampling)", | |
| value=0.90, | |
| minimum=0.0, | |
| maximum=1, | |
| step=0.05, | |
| interactive=True, | |
| info="Higher values sample more low-probability tokens", | |
| ), | |
| gr.Slider( | |
| label="Repetition penalty", | |
| value=1.2, | |
| minimum=1.0, | |
| maximum=2.0, | |
| step=0.05, | |
| interactive=True, | |
| info="Penalize repeated tokens", | |
| ), | |
| ] | |
| # Create a Chatbot object | |
| chatbot = gr.Chatbot(height=450, layout="bubble") | |
| # Build the Gradio interface | |
| with gr.Blocks() as demo: | |
| gr.HTML("<h1><center>🤖 Mistral-7B-Chat 💬</center></h1>") | |
| gr.ChatInterface( | |
| fn=generate, | |
| chatbot=chatbot, | |
| additional_inputs=additional_inputs, | |
| examples=[ | |
| ["Give me the code for Binary Search in C++"], | |
| ["Explain the chapter of The Grand Inquisitor from The Brothers Karamazov."], | |
| ["Explain Newton's second law."], | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| logger.info("Starting Gradio application") | |
| demo.launch() |