import os import logging from huggingface_hub import InferenceClient import gradio as gr from requests.exceptions import ConnectionError # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Initialize the Hugging Face Inference Client try: client = InferenceClient( model="mistralai/Mistral-7B-Instruct-v0.3", token=os.getenv("HF_TOKEN"), # Ensure HF_TOKEN is set in your environment timeout=30, ) except Exception as e: logger.error(f"Failed to initialize InferenceClient: {e}") raise def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def generate( prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, ): try: temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(prompt, history) logger.info("Sending request to Hugging Face API") stream = client.text_generation( formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False, ) output = "" for response in stream: output += response.token.text yield output return output except ConnectionError as e: logger.error(f"Network error: {e}") yield "Error: Unable to connect to the Hugging Face API. Please check your internet connection and try again." except Exception as e: logger.error(f"Error during text generation: {e}") yield f"Error: {str(e)}" # Define additional inputs for Gradio interface additional_inputs = [ gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=512, minimum=0, maximum=1048, step=64, interactive=True, info="The maximum number of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ), ] # Create a Chatbot object chatbot = gr.Chatbot(height=450, layout="bubble") # Build the Gradio interface with gr.Blocks() as demo: gr.HTML("

🤖 Mistral-7B-Chat 💬

") gr.ChatInterface( fn=generate, chatbot=chatbot, additional_inputs=additional_inputs, examples=[ ["Give me the code for Binary Search in C++"], ["Explain the chapter of The Grand Inquisitor from The Brothers Karamazov."], ["Explain Newton's second law."], ], ) if __name__ == "__main__": logger.info("Starting Gradio application") demo.launch()