Spaces:
Sleeping
Sleeping
| # app_offline_ner_min.py | |
| import os | |
| os.environ["TRANSFORMERS_OFFLINE"] = "1" # force offline per HF docs | |
| os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline | |
| import gradio as gr | |
| # point to your local snapshot downloaded by prepare_model.py | |
| # path: ./models/biomedical-ner-all | |
| HERE = os.path.dirname(os.path.abspath(__file__)) | |
| LOCAL_MODEL_DIR = os.path.join(HERE, "models", "biomedical-ner-all") | |
| # load strictly from disk | |
| tokenizer = AutoTokenizer.from_pretrained(LOCAL_MODEL_DIR, local_files_only=True) | |
| model = AutoModelForTokenClassification.from_pretrained(LOCAL_MODEL_DIR, local_files_only=True) | |
| device = 0 if torch.cuda.is_available() else -1 | |
| ner_pipe = pipeline( | |
| task="token-classification", # NER | |
| model=model, | |
| tokenizer=tokenizer, | |
| aggregation_strategy="simple", # merge subword tokens into entities | |
| device=device | |
| ) | |
| def run_ner(text: str): | |
| if not text.strip(): | |
| return {"text": "", "entities": []}, [] | |
| out = ner_pipe(text) | |
| highlighted = { | |
| "text": text, | |
| "entities": [ | |
| { | |
| "entity": r["entity_group"], | |
| "start": int(r["start"]), | |
| "end": int(r["end"]), | |
| "score": float(r["score"]), | |
| } | |
| for r in out | |
| ], | |
| } | |
| # list-of-lists in a fixed column order | |
| rows = [ | |
| [r["entity_group"], r["word"], float(r["score"]), int(r["start"]), int(r["end"])] | |
| for r in out | |
| ] | |
| return highlighted, rows | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# 🩺 Biomedical NER (offline, local model)") | |
| inp = gr.Textbox(label="Enter text", value="Patient has a history of asthma treated with albuterol.") | |
| ner_view = gr.HighlightedText(label="Entities", combine_adjacent=True) | |
| table = gr.Dataframe( | |
| label="Raw predictions", | |
| headers=["entity", "word", "score", "start", "end"], # <-- headers for list-of-lists | |
| interactive=False, | |
| ) | |
| inp.change(run_ner, inp, [ner_view, table]) | |
| demo.launch(debug=True) | |