SiyaYan's picture
comment wandb
1810dad verified
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import Dataset, DataLoader, Subset, random_split
from torchvision import transforms
import pandas as pd
from PIL import Image
import time
import numpy as np
import math
# import wandb
from datasets import load_dataset
import os
#define the model
class DinoRegressionHeteroImages(nn.Module):
def __init__(self, dino_model, hidden_dim=128, dropout=0.1, dino_dim=1024):
super().__init__()
self.dino = dino_model # ViT backbone (pre‑trained Dinov2)
for p in self.dino.parameters():
p.requires_grad = False
# **KEEP THE SAME LAYER NAMES AS THE EMBEDDING‑ONLY MODEL**
self.embedding_to_hidden = nn.Linear(dino_dim, hidden_dim)
self.leaky_relu = nn.LeakyReLU()
self.dropout = nn.Dropout(dropout)
self.hidden_to_hidden = nn.Linear(hidden_dim, hidden_dim)
self.out_mu = nn.Linear(hidden_dim, 1)
self.out_logvar = nn.Linear(hidden_dim, 1)
def forward(self, x):
h = self.dino(x) # [B, dino_dim]
h = self.embedding_to_hidden(h)
h = self.leaky_relu(h)
h = self.dropout(h)
h = self.hidden_to_hidden(h)
h = self.leaky_relu(h)
mu = self.out_mu(h).squeeze(1)
logvar = self.out_logvar(h).squeeze(1)
logvar = torch.clamp(logvar, -10.0, 3.0) # σ ~ [0.005, 20]
return mu, logvar
# Standard image transform
imgtransform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.Lambda(lambda x: x.convert('RGB')), # Ensure images are in RGB format
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
# This uses the Huggingface dataset library to load the dataset.
class LifespanDataset(Dataset):
def __init__(self, split="train",
repo_id="TristanKE/RemainingLifespanPredictionFaces",
transform=None):
self.ds = load_dataset(repo_id, split=split)
self.transform = transform
remaining = np.array(self.ds["remaining_lifespan"], dtype=np.float32)
self.lifespan_mean = float(remaining.mean())
self.lifespan_std = float(remaining.std())
def __len__(self):
return len(self.ds)
def __getitem__(self, idx):
ex = self.ds[idx] # dict with keys: image, remaining_lifespan, …
img = ex["image"] # PIL.Image
if self.transform:
img = self.transform(img)
target = (ex["remaining_lifespan"] - self.lifespan_mean) / self.lifespan_std
return img, torch.tensor(target, dtype=torch.float32)
# Gaussian Negative Log Likelihood loss
def heteroscedastic_nll(y, mu, logvar):
inv_var = torch.exp(-logvar)
return (0.5 * inv_var * (y - mu) ** 2 + 0.5 * logvar).mean()
# Cosine learning rate scheduler
def cosine_schedule(epoch, total_epochs):
return 0.5 * (1 + math.cos(math.pi * epoch / total_epochs))
# Main training loop
if __name__ == "__main__":
# Configuration, here you can change most things including the dataset
cfg = {
"N_HEADONLY_EPOCHS": 0,
"N_EPOCHS": 10,
"BASE_LR": 1e-4,
"BS": 32,
"HIDDEN": 128,
"DROPOUT": 0.01,
# "WANDB": True,
"REPO_ID": "TristanKE/RemainingLifespanPredictionFaces",
# "REPO_ID": "TristanKE/RemainingLifespanPredictionWholeImgs",
"DINO_MODEL": "dinov2_vitl14_reg",
# "DINO_MODEL": "dinov2_vitg14_reg", #the largest model, but also the slowest
"DINO_DIM": 1024,
# "DINO_DIM": 1536, #for the larger model
}
# if cfg["WANDB"]:
# wandb.init(project="mortpred", config=cfg)
torch.manual_seed(1)
ds = LifespanDataset(repo_id=cfg["REPO_ID"],transform=imgtransform)
test_sz = int(0.2 * len(ds))
train_sz = len(ds) - test_sz
train_ds, test_ds = random_split(ds, [train_sz, test_sz])
train_dataset = Subset(ds, train_ds.indices)
test_dataset = Subset(ds, test_ds.indices)
train_loader = DataLoader(train_dataset, batch_size=cfg["BS"], shuffle=True, num_workers=4)
test_loader = DataLoader(test_dataset, batch_size=cfg["BS"], shuffle=False, num_workers=4)
# Load the model and move it to the GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dino_backbone = torch.hub.load("facebookresearch/dinov2", cfg["DINO_MODEL"]).to(device)
model = DinoRegressionHeteroImages(dino_backbone, hidden_dim=cfg["HIDDEN"], dropout=cfg["DROPOUT"], dino_dim=cfg["DINO_DIM"]).to(device)
optimizer = optim.Adam(model.parameters(), lr=cfg["BASE_LR"])
scheduler = LambdaLR(optimizer, lambda e: cosine_schedule(e, cfg["N_EPOCHS"]))
best_test_mae = float("inf")
for epoch in range(cfg["N_EPOCHS"]):
# Train
model.train()
tr_nll, tr_mae = 0.0, 0.0
t0 = time.time()
for imgs, tgt in train_loader:
imgs, tgt = imgs.to(device), tgt.to(device)
optimizer.zero_grad()
mu, logvar = model(imgs)
loss = heteroscedastic_nll(tgt, mu, logvar)
loss.backward()
optimizer.step()
tr_nll += loss.item() * imgs.size(0)
tr_mae += torch.abs(mu.detach() - tgt).sum().item()
# if cfg["WANDB"]:
# wandb.log({
# "train_nll": loss.item(),
# "train_mae": torch.abs(mu.detach() - tgt).mean().item() * ds.lifespan_std,
# "train_std": torch.exp(0.5 * logvar).mean().item() * ds.lifespan_std,
# })
tr_nll /= train_sz
tr_mae = tr_mae / train_sz * ds.lifespan_std
# Evaluate
model.eval()
te_nll, te_mae = 0.0, 0.0
with torch.no_grad():
for imgs, tgt in test_loader:
imgs, tgt = imgs.to(device), tgt.to(device)
mu, logvar = model(imgs)
nll = heteroscedastic_nll(tgt, mu, logvar)
te_nll += nll.item() * imgs.size(0)
te_mae += torch.abs(mu - tgt).sum().item()
te_nll /= test_sz
te_mae = te_mae / test_sz * ds.lifespan_std
print(f"Epoch {epoch+1}/{cfg['N_EPOCHS']} | {time.time()-t0:.1f}s | NLL tr {tr_nll:.3f} / te {te_nll:.3f} | MAE(te) {te_mae:.2f} yrs")
# if cfg["WANDB"]:
# wandb.log({
# "train_nll": tr_nll,
# "test_nll": te_nll,
# "test_mae_yrs": te_mae,
# "lr": scheduler.get_last_lr()[0],
# })
scheduler.step()
# save best
if te_mae < best_test_mae:
best_test_mae = te_mae
if not os.path.exists("savedmodels"):
os.makedirs("savedmodels")
torch.save(model.state_dict(), f"savedmodels/dino_finetuned_faces_l1_{cfg['DINO_DIM']}_best.pth")
print(f"\tNew best model saved (test MAE {te_mae:.3f})")
# if cfg["WANDB"]:
# wandb.finish()