Spaces:
Sleeping
Sleeping
| from PIL import Image | |
| import matplotlib.pyplot as plt | |
| import torch | |
| from torchvision import transforms | |
| from transformers import AutoModelForImageSegmentation | |
| # Load the model | |
| model = AutoModelForImageSegmentation.from_pretrained('briaai/RMBG-2.0', trust_remote_code=True) | |
| torch.set_float32_matmul_precision('high') | |
| model.eval() | |
| # Data settings | |
| image_size = (1024, 1024) | |
| transform_image = transforms.Compose([ | |
| transforms.Resize(image_size), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
| ]) | |
| # Get the image file path from the user | |
| input_image_path = input("Please enter the file path of the image: ") | |
| # Open and convert the image | |
| try: | |
| im = Image.open(input_image_path) | |
| rgb_im = im.convert('RGB') | |
| except FileNotFoundError: | |
| print(f"Error: The file at {input_image_path} was not found.") | |
| exit() | |
| # Transform the image | |
| input_images = transform_image(rgb_im).unsqueeze(0) | |
| # Prediction | |
| with torch.no_grad(): | |
| preds = model(input_images)[-1].sigmoid().cpu() | |
| # Process the prediction | |
| pred = preds[0].squeeze() | |
| pred_pil = transforms.ToPILImage()(pred) | |
| mask = pred_pil.resize(rgb_im.size) | |
| rgb_im.putalpha(mask) | |
| # Save the result | |
| output_image_path = "no_bg_image.png" | |
| rgb_im.save(output_image_path) | |
| print(f"Image with background removed saved as {output_image_path}") | |