glass_try_on1 / app.py
Siyun He
update face detection method
acd6b6a
raw
history blame
6.59 kB
import cv2
import cvzone
import numpy as np
import os
import gradio as gr
import mediapipe as mp
from datetime import datetime
# Load the YuNet model
model_path = 'face_detection_yunet_2023mar.onnx'
face_detector = cv2.FaceDetectorYN.create(model_path, "", (320, 320))
# Initialize MediaPipe Face Mesh
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.5)
# Initialize the glass number
num = 1
overlay = cv2.imread(f'glasses/glass{num}.png', cv2.IMREAD_UNCHANGED)
# Count glasses files
def count_files_in_directory(directory):
file_count = 0
for root, dirs, files in os.walk(directory):
file_count += len(files)
return file_count
# Determine face shape
def determine_face_shape(landmarks):
# Example logic to determine face shape based on landmarks
# This is a simplified version and may need adjustments
jaw_width = np.linalg.norm(landmarks[0] - landmarks[16])
face_height = np.linalg.norm(landmarks[8] - landmarks[27])
if jaw_width / face_height > 1.5:
return "Round"
elif jaw_width / face_height < 1.2:
return "Oval"
else:
return "Square"
directory_path = 'glasses'
total_glass_num = count_files_in_directory(directory_path)
# Change glasses
def change_glasses():
global num, overlay
num += 1
if num > total_glass_num:
num = 1
overlay = cv2.imread(f'glasses/glass{num}.png', cv2.IMREAD_UNCHANGED)
return overlay
# Process frame for overlay and face shape detection
def process_frame(frame):
global overlay
frame = np.array(frame, copy=True)
height, width = frame.shape[:2]
face_detector.setInputSize((width, height))
_, faces = face_detector.detect(frame)
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results = face_mesh.process(frame_rgb)
face_shape = "Unknown"
if faces is not None and results.multi_face_landmarks:
for face in faces:
x, y, w, h = face[:4].astype(int)
face_landmarks = face[4:14].reshape(5, 2).astype(int)
# Determine face shape
# face_shape = determine_face_shape(landmarks)
# Get the nose position
nose_x, nose_y = face_landmarks[2].astype(int)
left_eye_x, left_eye_y = face_landmarks[0].astype(int)
right_eye_x, right_eye_y = face_landmarks[1].astype(int)
eye_center_x = (left_eye_x + right_eye_x) // 2
eye_center_y = (left_eye_y + right_eye_y) // 2
delta_x = right_eye_x - left_eye_x
delta_y = right_eye_y - left_eye_y
angle = np.degrees(np.arctan2(delta_y, delta_x))
angle = -angle
overlay_resize = cv2.resize(overlay, (int(w * 1.15), int(h * 0.8)))
overlay_center = (overlay_resize.shape[1] // 2, overlay_resize.shape[0] // 2)
rotation_matrix = cv2.getRotationMatrix2D(overlay_center, angle, 1.0)
overlay_rotated = cv2.warpAffine(
overlay_resize, rotation_matrix,
(overlay_resize.shape[1], overlay_resize.shape[0]),
flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=(0, 0, 0, 0)
)
overlay_x = eye_center_x - overlay_rotated.shape[1] // 2
overlay_y = eye_center_y - overlay_rotated.shape[0] // 2
try:
frame = cvzone.overlayPNG(frame, overlay_rotated, [overlay_x, overlay_y])
except Exception as e:
print(f"Error overlaying glasses: {e}")
for face_landmarks_mp in results.multi_face_landmarks:
landmarks = np.array([(lm.x * frame.shape[1], lm.y * frame.shape[0]) for lm in face_landmarks_mp.landmark])
# Determine face shape
face_shape = determine_face_shape(landmarks)
return frame, face_shape
# Transform function
def transform_cv2(frame, transform):
if transform == "cartoon":
# prepare color
img_color = cv2.pyrDown(cv2.pyrDown(frame))
for _ in range(6):
img_color = cv2.bilateralFilter(img_color, 9, 9, 7)
img_color = cv2.pyrUp(cv2.pyrUp(img_color))
# prepare edges
img_edges = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
img_edges = cv2.adaptiveThreshold(
cv2.medianBlur(img_edges, 7),
255,
cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY,
9,
2,
)
img_edges = cv2.cvtColor(img_edges, cv2.COLOR_GRAY2RGB)
# combine color and edges
img = cv2.bitwise_and(img_color, img_edges)
return img
elif transform == "edges":
# perform edge detection
img = cv2.cvtColor(cv2.Canny(frame, 100, 200), cv2.COLOR_GRAY2BGR)
return img
else:
return frame
def refresh_interface():
# Reset the image to an empty state or a default image
input_img.update(value=None)
# Return a message indicating the interface has been refreshed
return "Interface refreshed!"
def save_frame(frame):
# Convert frame to RGB
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Create a unique filename using the current timestamp
filename = f"saved_frame_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png"
# Save the frame
cv2.imwrite(filename, frame)
# Refresh the interfaceq
refresh_interface()
return f"Frame saved as '{filename}'"
# Gradio webcam input
def webcam_input(frame, transform):
frame, face_shape = process_frame(frame)
frame = transform_cv2(frame, transform)
return frame, face_shape
# Gradio Interface
with gr.Blocks() as demo:
with gr.Column(elem_classes=["my-column"]):
with gr.Group(elem_classes=["my-group"]):
transform = gr.Dropdown(choices=["cartoon", "edges", "none"],
value="none", label="Transformation")
input_img = gr.Image(sources=["webcam"], type="numpy", streaming=True)
face_shape_output = gr.Textbox(label="Detected Face Shape")
next_button = gr.Button("Next Glasses")
save_button = gr.Button("Save as a Picture")
input_img.stream(webcam_input, [input_img, transform], [input_img, face_shape_output], time_limit=30, stream_every=0.1)
with gr.Row():
next_button.click(change_glasses, [], [])
with gr.Row():
save_button.click(save_frame, [input_img], [])
if __name__ == "__main__":
demo.launch(share=True)