debug
Browse files
app.py
CHANGED
|
@@ -29,12 +29,14 @@ imagenet_classes = load_text_lines(IMAGENET_CLASSES_FILE)
|
|
| 29 |
|
| 30 |
|
| 31 |
def classify_image(input_image) -> str:
|
|
|
|
| 32 |
inputs = processor(
|
| 33 |
text=imagenet_classes,
|
| 34 |
images=input_image,
|
| 35 |
return_tensors="pt",
|
| 36 |
padding=True)
|
| 37 |
outputs = model(**inputs)
|
|
|
|
| 38 |
probs = outputs.logits_per_image.softmax(dim=1)
|
| 39 |
class_index = np.argmax(probs.detach().numpy())
|
| 40 |
return imagenet_classes[class_index]
|
|
@@ -58,4 +60,4 @@ with gr.Blocks() as demo:
|
|
| 58 |
run_on_click=True
|
| 59 |
)
|
| 60 |
|
| 61 |
-
demo.
|
|
|
|
| 29 |
|
| 30 |
|
| 31 |
def classify_image(input_image) -> str:
|
| 32 |
+
print(type(input_image))
|
| 33 |
inputs = processor(
|
| 34 |
text=imagenet_classes,
|
| 35 |
images=input_image,
|
| 36 |
return_tensors="pt",
|
| 37 |
padding=True)
|
| 38 |
outputs = model(**inputs)
|
| 39 |
+
print(outputs)
|
| 40 |
probs = outputs.logits_per_image.softmax(dim=1)
|
| 41 |
class_index = np.argmax(probs.detach().numpy())
|
| 42 |
return imagenet_classes[class_index]
|
|
|
|
| 60 |
run_on_click=True
|
| 61 |
)
|
| 62 |
|
| 63 |
+
demo.launch(debug=False)
|