Spaces:
Runtime error
Runtime error
poc
Browse files
app.py
CHANGED
|
@@ -1,39 +1,109 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import supervision as sv
|
| 4 |
import torch
|
| 5 |
from PIL import Image
|
| 6 |
-
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 9 |
SAM_GENERATOR = pipeline(
|
| 10 |
task="mask-generation",
|
| 11 |
model="facebook/sam-vit-large",
|
| 12 |
device=DEVICE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
|
| 15 |
-
def
|
| 16 |
outputs = SAM_GENERATOR(image_rgb_pil, points_per_batch=32)
|
| 17 |
mask = np.array(outputs['masks'])
|
| 18 |
return sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask)
|
| 19 |
|
| 20 |
|
| 21 |
-
def
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
|
|
|
|
|
|
| 25 |
img_bgr_numpy = np.array(image_rgb_pil)[:, :, ::-1]
|
| 26 |
-
annotated_bgr_image =
|
| 27 |
scene=img_bgr_numpy, detections=detections)
|
| 28 |
return Image.fromarray(annotated_bgr_image[:, :, ::-1])
|
| 29 |
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
with gr.Blocks() as demo:
|
|
|
|
| 32 |
with gr.Row():
|
| 33 |
-
|
|
|
|
|
|
|
| 34 |
result_image = gr.Image(image_mode='RGB', type='pil')
|
| 35 |
submit_button = gr.Button("Submit")
|
| 36 |
|
| 37 |
-
submit_button.click(
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
demo.launch(debug=False)
|
|
|
|
| 1 |
+
from typing import List
|
| 2 |
+
|
| 3 |
import gradio as gr
|
| 4 |
import numpy as np
|
| 5 |
import supervision as sv
|
| 6 |
import torch
|
| 7 |
from PIL import Image
|
| 8 |
+
from transformers import pipeline, CLIPProcessor, CLIPModel
|
| 9 |
+
|
| 10 |
+
MARKDOWN = """
|
| 11 |
+
# Segment Anything Model + MetaCLIP
|
| 12 |
+
This is the demo for a Open Vocabulary Image Segmentation using
|
| 13 |
+
[Segment Anything Model](https://github.com/facebookresearch/segment-anything) and
|
| 14 |
+
[MetaCLIP](https://github.com/facebookresearch/MetaCLIP) combo.
|
| 15 |
+
"""
|
| 16 |
|
| 17 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 18 |
SAM_GENERATOR = pipeline(
|
| 19 |
task="mask-generation",
|
| 20 |
model="facebook/sam-vit-large",
|
| 21 |
device=DEVICE)
|
| 22 |
+
CLIP_MODEL = CLIPModel.from_pretrained("facebook/metaclip-b32-400m").to(DEVICE)
|
| 23 |
+
CLIP_PROCESSOR = CLIPProcessor.from_pretrained("facebook/metaclip-b32-400m")
|
| 24 |
+
MASK_ANNOTATOR = sv.MaskAnnotator(
|
| 25 |
+
color=sv.Color.red(),
|
| 26 |
+
color_lookup=sv.ColorLookup.INDEX)
|
| 27 |
|
| 28 |
|
| 29 |
+
def run_sam(image_rgb_pil: Image.Image) -> sv.Detections:
|
| 30 |
outputs = SAM_GENERATOR(image_rgb_pil, points_per_batch=32)
|
| 31 |
mask = np.array(outputs['masks'])
|
| 32 |
return sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask)
|
| 33 |
|
| 34 |
|
| 35 |
+
def run_clip(image_rgb_pil: Image.Image, text: List[str]) -> np.ndarray:
|
| 36 |
+
inputs = CLIP_PROCESSOR(
|
| 37 |
+
text=text,
|
| 38 |
+
images=image_rgb_pil,
|
| 39 |
+
return_tensors="pt",
|
| 40 |
+
padding=True
|
| 41 |
+
).to(DEVICE)
|
| 42 |
+
outputs = CLIP_MODEL(**inputs)
|
| 43 |
+
probs = outputs.logits_per_image.softmax(dim=1)
|
| 44 |
+
return probs.detach().cpu().numpy()
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def reverse_mask_image(image: np.ndarray, mask: np.ndarray, gray_value=128):
|
| 48 |
+
gray_color = np.array([gray_value, gray_value, gray_value], dtype=np.uint8)
|
| 49 |
+
return np.where(mask[..., None], image, gray_color)
|
| 50 |
|
| 51 |
+
|
| 52 |
+
def annotate(image_rgb_pil: Image.Image, detections: sv.Detections) -> Image.Image:
|
| 53 |
img_bgr_numpy = np.array(image_rgb_pil)[:, :, ::-1]
|
| 54 |
+
annotated_bgr_image = MASK_ANNOTATOR.annotate(
|
| 55 |
scene=img_bgr_numpy, detections=detections)
|
| 56 |
return Image.fromarray(annotated_bgr_image[:, :, ::-1])
|
| 57 |
|
| 58 |
|
| 59 |
+
def filter_detections(
|
| 60 |
+
image_rgb_pil: Image.Image,
|
| 61 |
+
detections: sv.Detections,
|
| 62 |
+
prompt: str
|
| 63 |
+
) -> sv.Detections:
|
| 64 |
+
img_rgb_numpy = np.array(image_rgb_pil)
|
| 65 |
+
text = [f"a picture of {prompt}", "a picture of background"]
|
| 66 |
+
filtering_mask = []
|
| 67 |
+
|
| 68 |
+
for xyxy, mask in zip(detections.xyxy, detections.mask):
|
| 69 |
+
crop = sv.crop_image(image=img_rgb_numpy, xyxy=xyxy)
|
| 70 |
+
mask_crop = sv.crop_image(image=mask, xyxy=xyxy)
|
| 71 |
+
masked_crop = reverse_mask_image(image=crop, mask=mask_crop)
|
| 72 |
+
masked_crop_pil = Image.fromarray(masked_crop)
|
| 73 |
+
probs = run_clip(image_rgb_pil=masked_crop_pil, text=text)
|
| 74 |
+
lass_index = np.argmax(probs)
|
| 75 |
+
filtering_mask.append(lass_index == 0)
|
| 76 |
+
|
| 77 |
+
filtering_mask = np.array(filtering_mask)
|
| 78 |
+
return detections[filtering_mask]
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def inference(image_rgb_pil: Image.Image, prompt: str) -> Image.Image:
|
| 82 |
+
width, height = image_rgb_pil.size
|
| 83 |
+
area = width * height
|
| 84 |
+
|
| 85 |
+
detections = run_sam(image_rgb_pil)
|
| 86 |
+
detections = detections[detections.area / area > 0.005]
|
| 87 |
+
detections = filter_detections(
|
| 88 |
+
image_rgb_pil=image_rgb_pil,
|
| 89 |
+
detections=detections,
|
| 90 |
+
prompt=prompt)
|
| 91 |
+
|
| 92 |
+
return annotate(image_rgb_pil=image_rgb_pil, detections=detections)
|
| 93 |
+
|
| 94 |
+
|
| 95 |
with gr.Blocks() as demo:
|
| 96 |
+
gr.Markdown(MARKDOWN)
|
| 97 |
with gr.Row():
|
| 98 |
+
with gr.Column():
|
| 99 |
+
input_image = gr.Image(image_mode='RGB', type='pil')
|
| 100 |
+
prompt_text = gr.Textbox(label="Prompt", value="dog")
|
| 101 |
result_image = gr.Image(image_mode='RGB', type='pil')
|
| 102 |
submit_button = gr.Button("Submit")
|
| 103 |
|
| 104 |
+
submit_button.click(
|
| 105 |
+
inference,
|
| 106 |
+
inputs=[input_image, prompt_text],
|
| 107 |
+
outputs=result_image)
|
| 108 |
|
| 109 |
demo.launch(debug=False)
|