Spaces:
Runtime error
Runtime error
Revise to support video processing with Supervision
Browse filesThis update entirely overhauls the application to replace the existing image processing functionality with a custom video processing implementation.
- README.md +1 -1
- app.py +39 -19
- requirements.txt +1 -0
README.md
CHANGED
|
@@ -4,7 +4,7 @@ emoji: π¨
|
|
| 4 |
colorFrom: pink
|
| 5 |
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
|
|
|
| 4 |
colorFrom: pink
|
| 5 |
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.50.2
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
app.py
CHANGED
|
@@ -1,33 +1,53 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
-
import
|
| 5 |
-
from
|
| 6 |
-
from transformers import SamModel, SamProcessor
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
|
| 12 |
|
| 13 |
-
def
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
|
| 19 |
with gr.Blocks() as demo:
|
| 20 |
with gr.Row():
|
| 21 |
with gr.Column():
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
| 25 |
submit_button = gr.Button("Submit")
|
| 26 |
-
|
|
|
|
|
|
|
| 27 |
|
| 28 |
submit_button.click(
|
| 29 |
-
|
| 30 |
-
inputs=[
|
| 31 |
-
outputs=
|
| 32 |
|
| 33 |
-
demo.launch(debug=False, show_error=True)
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
import uuid
|
| 3 |
+
from typing import Tuple
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
+
import supervision as sv
|
| 7 |
+
from tqdm import tqdm
|
|
|
|
| 8 |
|
| 9 |
+
START_FRAME = 0
|
| 10 |
+
END_FRAME = 10
|
| 11 |
+
TOTAL = END_FRAME - START_FRAME
|
| 12 |
|
| 13 |
|
| 14 |
+
def process(
|
| 15 |
+
source_video: str,
|
| 16 |
+
prompt: str,
|
| 17 |
+
confidence: float,
|
| 18 |
+
progress=gr.Progress(track_tqdm=True)
|
| 19 |
+
) -> Tuple[str, str]:
|
| 20 |
+
name = str(uuid.uuid4())
|
| 21 |
+
video_info = sv.VideoInfo.from_video_path(source_video)
|
| 22 |
+
frame_iterator = iter(sv.get_video_frames_generator(
|
| 23 |
+
source_path=source_video, start=START_FRAME, end=END_FRAME))
|
| 24 |
+
|
| 25 |
+
with sv.VideoSink(f"{name}.mp4", video_info=video_info) as sink:
|
| 26 |
+
for _ in tqdm(range(TOTAL), desc="Masking frames"):
|
| 27 |
+
frame = next(frame_iterator)
|
| 28 |
+
sink.write_frame(frame)
|
| 29 |
+
time.sleep(0.1)
|
| 30 |
+
|
| 31 |
+
return f"{name}.mp4", f"{name}.mp4"
|
| 32 |
|
| 33 |
|
| 34 |
with gr.Blocks() as demo:
|
| 35 |
with gr.Row():
|
| 36 |
with gr.Column():
|
| 37 |
+
source_video_player = gr.Video(
|
| 38 |
+
label="Source video", source="upload", format="mp4")
|
| 39 |
+
prompt_text = gr.Textbox(
|
| 40 |
+
label="Prompt", value="person")
|
| 41 |
+
confidence_slider = gr.Slider(
|
| 42 |
+
label="Confidence", minimum=0.5, maximum=1.0, step=0.05, value=0.6)
|
| 43 |
submit_button = gr.Button("Submit")
|
| 44 |
+
with gr.Column():
|
| 45 |
+
masked_video_player = gr.Video(label="Masked video")
|
| 46 |
+
painted_video_player = gr.Video(label="Painted video")
|
| 47 |
|
| 48 |
submit_button.click(
|
| 49 |
+
process,
|
| 50 |
+
inputs=[source_video_player, prompt_text, confidence_slider],
|
| 51 |
+
outputs=[masked_video_player, painted_video_player])
|
| 52 |
|
| 53 |
+
demo.queue().launch(debug=False, show_error=True)
|
requirements.txt
CHANGED
|
@@ -3,6 +3,7 @@ torch
|
|
| 3 |
torchvision
|
| 4 |
|
| 5 |
numpy
|
|
|
|
| 6 |
pillow
|
| 7 |
gradio==3.50.2
|
| 8 |
transformers
|
|
|
|
| 3 |
torchvision
|
| 4 |
|
| 5 |
numpy
|
| 6 |
+
opencv-python
|
| 7 |
pillow
|
| 8 |
gradio==3.50.2
|
| 9 |
transformers
|