Spaces:
Running
on
Zero
Running
on
Zero
prompting with boxes added
Browse files- app.py +72 -47
- requirements.txt +1 -1
- utils/models.py +18 -7
app.py
CHANGED
|
@@ -5,9 +5,10 @@ import numpy as np
|
|
| 5 |
import supervision as sv
|
| 6 |
import torch
|
| 7 |
from PIL import Image
|
| 8 |
-
from
|
| 9 |
|
| 10 |
-
from utils.models import load_models, CHECKPOINT_NAMES
|
|
|
|
| 11 |
|
| 12 |
MARKDOWN = """
|
| 13 |
# Segment Anything Model 2 🔥
|
|
@@ -27,35 +28,50 @@ MARKDOWN = """
|
|
| 27 |
</div>
|
| 28 |
|
| 29 |
Segment Anything Model 2 (SAM 2) is a foundation model designed to address promptable
|
| 30 |
-
visual segmentation in both images and videos.
|
| 31 |
-
|
| 32 |
-
architecture with streaming memory, enables real-time video processing. A
|
| 33 |
-
model-in-the-loop data engine, which enhances the model and data through user
|
| 34 |
-
interaction, was built to collect the SA-V dataset, the largest video segmentation
|
| 35 |
-
dataset to date. SAM 2, trained on this extensive dataset, delivers robust performance
|
| 36 |
-
across diverse tasks and visual domains.
|
| 37 |
"""
|
| 38 |
-
EXAMPLES = [
|
| 39 |
-
["tiny", "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", 16],
|
| 40 |
-
["small", "https://media.roboflow.com/notebooks/examples/dog-3.jpeg", 16],
|
| 41 |
-
["large", "https://media.roboflow.com/notebooks/examples/dog-3.jpeg", 16],
|
| 42 |
-
["large", "https://media.roboflow.com/notebooks/examples/dog-3.jpeg", 64],
|
| 43 |
-
]
|
| 44 |
|
| 45 |
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 46 |
MASK_ANNOTATOR = sv.MaskAnnotator(color_lookup=sv.ColorLookup.INDEX)
|
| 47 |
-
|
| 48 |
|
| 49 |
|
| 50 |
-
def process(
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
|
| 61 |
with gr.Blocks() as demo:
|
|
@@ -67,39 +83,48 @@ with gr.Blocks() as demo:
|
|
| 67 |
label="Checkpoint", info="Select a SAM2 checkpoint to use.",
|
| 68 |
interactive=True
|
| 69 |
)
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
|
|
|
| 77 |
)
|
| 78 |
with gr.Row():
|
| 79 |
with gr.Column():
|
| 80 |
-
image_input_component = gr.Image(
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
with gr.Column():
|
| 83 |
image_output_component = gr.Image(type='pil', label='Image Output')
|
| 84 |
-
with gr.Row():
|
| 85 |
-
gr.Examples(
|
| 86 |
-
fn=process,
|
| 87 |
-
examples=EXAMPLES,
|
| 88 |
-
inputs=[
|
| 89 |
-
checkpoint_dropdown_component,
|
| 90 |
-
image_input_component,
|
| 91 |
-
points_per_side_component
|
| 92 |
-
],
|
| 93 |
-
outputs=[image_output_component],
|
| 94 |
-
run_on_click=True
|
| 95 |
-
)
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
submit_button_component.click(
|
| 98 |
fn=process,
|
| 99 |
inputs=[
|
| 100 |
checkpoint_dropdown_component,
|
|
|
|
| 101 |
image_input_component,
|
| 102 |
-
|
| 103 |
],
|
| 104 |
outputs=[image_output_component]
|
| 105 |
)
|
|
|
|
| 5 |
import supervision as sv
|
| 6 |
import torch
|
| 7 |
from PIL import Image
|
| 8 |
+
from gradio_image_prompter import ImagePrompter
|
| 9 |
|
| 10 |
+
from utils.models import load_models, CHECKPOINT_NAMES, MODE_NAMES, \
|
| 11 |
+
MASK_GENERATION_MODE, BOX_PROMPT_MODE
|
| 12 |
|
| 13 |
MARKDOWN = """
|
| 14 |
# Segment Anything Model 2 🔥
|
|
|
|
| 28 |
</div>
|
| 29 |
|
| 30 |
Segment Anything Model 2 (SAM 2) is a foundation model designed to address promptable
|
| 31 |
+
visual segmentation in both images and videos. **Video segmentation will be available
|
| 32 |
+
soon.**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 36 |
MASK_ANNOTATOR = sv.MaskAnnotator(color_lookup=sv.ColorLookup.INDEX)
|
| 37 |
+
IMAGE_PREDICTORS, MASK_GENERATORS = load_models(device=DEVICE)
|
| 38 |
|
| 39 |
|
| 40 |
+
def process(
|
| 41 |
+
checkpoint_dropdown,
|
| 42 |
+
mode_dropdown,
|
| 43 |
+
image_input,
|
| 44 |
+
image_prompter_input
|
| 45 |
+
) -> Optional[Image.Image]:
|
| 46 |
+
if mode_dropdown == BOX_PROMPT_MODE:
|
| 47 |
+
image_input = image_prompter_input["image"]
|
| 48 |
+
prompt = image_prompter_input["points"]
|
| 49 |
+
if len(prompt) == 0:
|
| 50 |
+
return image_input
|
| 51 |
+
|
| 52 |
+
model = IMAGE_PREDICTORS[checkpoint_dropdown]
|
| 53 |
+
image = np.array(image_input.convert("RGB"))
|
| 54 |
+
box = np.array([[x1, y1, x2, y2] for x1, y1, _, x2, y2, _ in prompt])
|
| 55 |
+
|
| 56 |
+
model.set_image(image)
|
| 57 |
+
masks, _, _ = model.predict(box=box, multimask_output=False)
|
| 58 |
+
|
| 59 |
+
# dirty fix; remove this later
|
| 60 |
+
if len(masks.shape) == 4:
|
| 61 |
+
masks = np.squeeze(masks)
|
| 62 |
+
|
| 63 |
+
detections = sv.Detections(
|
| 64 |
+
xyxy=sv.mask_to_xyxy(masks=masks),
|
| 65 |
+
mask=masks.astype(bool)
|
| 66 |
+
)
|
| 67 |
+
return MASK_ANNOTATOR.annotate(image_input, detections)
|
| 68 |
+
|
| 69 |
+
if mode_dropdown == MASK_GENERATION_MODE:
|
| 70 |
+
model = MASK_GENERATORS[checkpoint_dropdown]
|
| 71 |
+
image = np.array(image_input.convert("RGB"))
|
| 72 |
+
result = model.generate(image)
|
| 73 |
+
detections = sv.Detections.from_sam(result)
|
| 74 |
+
return MASK_ANNOTATOR.annotate(image_input, detections)
|
| 75 |
|
| 76 |
|
| 77 |
with gr.Blocks() as demo:
|
|
|
|
| 83 |
label="Checkpoint", info="Select a SAM2 checkpoint to use.",
|
| 84 |
interactive=True
|
| 85 |
)
|
| 86 |
+
mode_dropdown_component = gr.Dropdown(
|
| 87 |
+
choices=MODE_NAMES,
|
| 88 |
+
value=MODE_NAMES[0],
|
| 89 |
+
label="Mode",
|
| 90 |
+
info="Select a mode to use. `box prompt` if you want to generate masks for "
|
| 91 |
+
"selected objects, `mask generation` if you want to generate masks "
|
| 92 |
+
"for the whole image.",
|
| 93 |
+
interactive=True
|
| 94 |
)
|
| 95 |
with gr.Row():
|
| 96 |
with gr.Column():
|
| 97 |
+
image_input_component = gr.Image(
|
| 98 |
+
type='pil', label='Upload image', visible=False)
|
| 99 |
+
image_prompter_input_component = ImagePrompter(
|
| 100 |
+
type='pil', label='Image prompt')
|
| 101 |
+
submit_button_component = gr.Button(
|
| 102 |
+
value='Submit', variant='primary')
|
| 103 |
with gr.Column():
|
| 104 |
image_output_component = gr.Image(type='pil', label='Image Output')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
+
|
| 107 |
+
def on_mode_dropdown_change(text):
|
| 108 |
+
return [
|
| 109 |
+
gr.Image(visible=text == MASK_GENERATION_MODE),
|
| 110 |
+
ImagePrompter(visible=text == BOX_PROMPT_MODE)
|
| 111 |
+
]
|
| 112 |
+
|
| 113 |
+
mode_dropdown_component.change(
|
| 114 |
+
on_mode_dropdown_change,
|
| 115 |
+
inputs=[mode_dropdown_component],
|
| 116 |
+
outputs=[
|
| 117 |
+
image_input_component,
|
| 118 |
+
image_prompter_input_component
|
| 119 |
+
]
|
| 120 |
+
)
|
| 121 |
submit_button_component.click(
|
| 122 |
fn=process,
|
| 123 |
inputs=[
|
| 124 |
checkpoint_dropdown_component,
|
| 125 |
+
mode_dropdown_component,
|
| 126 |
image_input_component,
|
| 127 |
+
image_prompter_input_component,
|
| 128 |
],
|
| 129 |
outputs=[image_output_component]
|
| 130 |
)
|
requirements.txt
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
samv2
|
| 2 |
gradio
|
| 3 |
supervision
|
| 4 |
-
|
| 5 |
opencv-python
|
|
|
|
| 1 |
samv2
|
| 2 |
gradio
|
| 3 |
supervision
|
| 4 |
+
gradio_image_prompter
|
| 5 |
opencv-python
|
utils/models.py
CHANGED
|
@@ -1,10 +1,16 @@
|
|
| 1 |
-
import
|
| 2 |
|
| 3 |
-
|
|
|
|
| 4 |
from sam2.build_sam import build_sam2
|
|
|
|
| 5 |
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
| 7 |
|
|
|
|
| 8 |
CHECKPOINTS = {
|
| 9 |
"tiny": ["sam2_hiera_t.yaml", "checkpoints/sam2_hiera_tiny.pt"],
|
| 10 |
"small": ["sam2_hiera_s.yaml", "checkpoints/sam2_hiera_small.pt"],
|
|
@@ -13,8 +19,13 @@ CHECKPOINTS = {
|
|
| 13 |
}
|
| 14 |
|
| 15 |
|
| 16 |
-
def load_models(
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
| 18 |
for key, (config, checkpoint) in CHECKPOINTS.items():
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, Tuple
|
| 2 |
|
| 3 |
+
import torch
|
| 4 |
+
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator
|
| 5 |
from sam2.build_sam import build_sam2
|
| 6 |
+
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 7 |
|
| 8 |
+
BOX_PROMPT_MODE = "box prompt"
|
| 9 |
+
MASK_GENERATION_MODE = "mask generation"
|
| 10 |
+
VIDEO_SEGMENTATION_MODE = "video segmentation"
|
| 11 |
+
MODE_NAMES = [BOX_PROMPT_MODE, MASK_GENERATION_MODE]
|
| 12 |
|
| 13 |
+
CHECKPOINT_NAMES = ["tiny", "small", "base_plus", "large"]
|
| 14 |
CHECKPOINTS = {
|
| 15 |
"tiny": ["sam2_hiera_t.yaml", "checkpoints/sam2_hiera_tiny.pt"],
|
| 16 |
"small": ["sam2_hiera_s.yaml", "checkpoints/sam2_hiera_small.pt"],
|
|
|
|
| 19 |
}
|
| 20 |
|
| 21 |
|
| 22 |
+
def load_models(
|
| 23 |
+
device: torch.device
|
| 24 |
+
) -> Tuple[Dict[str, SAM2ImagePredictor], Dict[str, SAM2AutomaticMaskGenerator]]:
|
| 25 |
+
image_predictors = {}
|
| 26 |
+
mask_generators = {}
|
| 27 |
for key, (config, checkpoint) in CHECKPOINTS.items():
|
| 28 |
+
model = build_sam2(config, checkpoint, device=device)
|
| 29 |
+
image_predictors[key] = SAM2ImagePredictor(sam_model=model)
|
| 30 |
+
mask_generators[key] = SAM2AutomaticMaskGenerator(model=model)
|
| 31 |
+
return image_predictors, mask_generators
|