import torch import numpy as np import os from mesh.smpl2mesh import SMPL2Mesh from skeleton import SkeletonAMASS, convert2humanml from mesh.io import save_obj, to_mesh from skeleton2smpl.skeleton2smpl import Skeleton2Obj import json def get_humanml_motion(npy_file, skeleton, remove_global_translation=False): motion = torch.from_numpy(np.load(npy_file, allow_pickle=True)) if remove_global_translation: #remove hip motion motion = motion - motion[..., 0:1, :] humanml_motion = convert2humanml( motion, skeleton.LANDMARKS, skeleton.TO_HUMANML_NAMES ) return humanml_motion def save_mesh(vertices, faces, npy_file): def npy_path_to_obj_path(npy_path: str) -> str: return os.path.join(os.path.dirname(npy_path) , f"{npy_path}_obj") results_dir = npy_path_to_obj_path(npy_file) os.makedirs(results_dir, exist_ok=True) # create obs_obj and pred_obj folders obs_obj_dir = os.path.join(results_dir, "obs_obj") pred_obj_dir = os.path.join(results_dir, "pred_obj") os.makedirs(obs_obj_dir, exist_ok=True) os.makedirs(pred_obj_dir, exist_ok=True) for frame_i in range(vertices.shape[-1]): # first 30 frames save to obs_obj/ if frame_i < 30: file_path = os.path.join(results_dir, f"obs_obj/frame{frame_i:03d}.obj") else: file_path = os.path.join(results_dir, f"pred_obj/frame{frame_i:03d}.obj") mesh = to_mesh(vertices[..., frame_i], faces) save_obj(mesh, file_path) print(f"Saved obj files to [{results_dir}]") def main(): test_directory = '/usr/wiss/curreli/work/my_exps/final_predictions_storage/hmp/visuals_50samples/amass/SkeletonDiffusion/test_optimization' num_smplify_iters = 20 device = "cuda" # Load the dictionary of arrays from the npz file output_file = "src_joints2smpl_demo/obs_data.npz" loaded_data = np.load(output_file, allow_pickle=True) rot_motions_obs = loaded_data["rot_motions_obs"] smpl_dict_obs = loaded_data['smpl_dict_obs'].item() smpl_dict_obs = {k: torch.from_numpy(v).to(device) for k,v in smpl_dict_obs.items()} print("Loaded observation data from npz file.") skeleton = SkeletonAMASS skeleton2obj = Skeleton2Obj( device=device, num_smplify_iters=num_smplify_iters, smpl_model_dir="./models/body_models/", #path to smpl body models gmm_model_dir="./models/joint2smpl_models/", #path to gmm model ) # get all the npy files in the directory pred_files = ['pred_closest_GT.npy'] pred_motions = torch.cat([get_humanml_motion(npy_file, skeleton=skeleton, remove_global_translation=True) for npy_file in pred_files], dim=0) pred_motions = pred_motions.view(-1, 22, 3).to(device) init_params = {} init_params["betas"] = smpl_dict_obs["betas"][-1].unsqueeze(0).expand(pred_motions.shape[0], -1).to(device) init_params["pose"] = smpl_dict_obs["pose"][-1].unsqueeze(0).expand(pred_motions.shape[0], -1, -1).view(pred_motions.shape[0], -1).to(device) init_params["cam"] = smpl_dict_obs["cam"][-1].unsqueeze(0).expand(pred_motions.shape[0], -1, -1).to(device) rot_motions, smpl_dict = skeleton2obj.convert_motion_2smpl(pred_motions, hmp=True, init_params=init_params, fix_betas=True) smpl2mesh = SMPL2Mesh(device) vertices, faces = smpl2mesh.convert_smpl_to_mesh(rot_motions, pred_motions) pred_files = [('pred_closest_GT.npy')] vertices = vertices.reshape(*vertices.shape[:2], len(pred_files), -1) for v, npy_file in zip(np.moveaxis(vertices, 2, 0), pred_files): save_mesh(v, faces, npy_file) if __name__ == "__main__": main()