Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,50 +1,23 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import
|
| 3 |
-
import json
|
| 4 |
|
| 5 |
-
#
|
| 6 |
-
|
| 7 |
-
# This must match the name used in `ollama pull` in Dockerfile
|
| 8 |
-
MODEL_NAME = "gemma3_4b_it_qat"
|
| 9 |
|
| 10 |
-
def
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
"stream": False, # We want the full response at once
|
| 18 |
-
"options": {
|
| 19 |
-
"num_predict": max_new_tokens,
|
| 20 |
-
"temperature": temperature,
|
| 21 |
-
}
|
| 22 |
-
}
|
| 23 |
-
try:
|
| 24 |
-
# Send a POST request to the Ollama API.
|
| 25 |
-
# Increased timeout for potentially slow CPU inference.
|
| 26 |
-
response = requests.post(OLLAMA_API_URL, json=payload, timeout=600) # 10 minutes timeout
|
| 27 |
-
response.raise_for_status() # Raise an exception for HTTP errors (4xx or 5xx)
|
| 28 |
-
result = response.json()
|
| 29 |
-
return result.get("response", "No response from model.")
|
| 30 |
-
except requests.exceptions.RequestException as e:
|
| 31 |
-
return f"Error communicating with Ollama: {e}"
|
| 32 |
|
| 33 |
-
#
|
| 34 |
-
iface = gr.
|
| 35 |
-
fn=
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
gr.Slider(minimum=1, maximum=1024, value=256, label="Max New Tokens", info="Maximum number of tokens to generate."),
|
| 39 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, label="Temperature", info="Controls randomness in generation. Lower values are less random.")
|
| 40 |
-
],
|
| 41 |
-
outputs="text",
|
| 42 |
-
title=f"Ollama {MODEL_NAME} on Hugging Face Spaces (CPU-only)",
|
| 43 |
-
description="Interact with a Gemma 3.4B IT QAT GGUF model served by Ollama on CPU. Please be patient, as CPU inference can be slow."
|
| 44 |
)
|
| 45 |
|
| 46 |
-
# Launch the
|
| 47 |
-
|
| 48 |
-
# server_port=7860 is the default port for Gradio apps on Hugging Face Spaces.
|
| 49 |
-
if __name__ == "__main__":
|
| 50 |
-
iface.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import ollama
|
|
|
|
| 3 |
|
| 4 |
+
# The model name must exactly match what was pulled from Hugging Face
|
| 5 |
+
MODEL_NAME = 'hf.co/unsloth/gemma-3-4b-it-qat-GGUF:Q4_K_M'
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
def predict(prompt, history):
|
| 8 |
+
# The history is not used in this simple example, but is required by the ChatInterface
|
| 9 |
+
response = ollama.chat(
|
| 10 |
+
model=MODEL_NAME,
|
| 11 |
+
messages=[{'role': 'user', 'content': prompt}]
|
| 12 |
+
)
|
| 13 |
+
return response['message']['content']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
# Setup the Gradio Chat Interface
|
| 16 |
+
iface = gr.ChatInterface(
|
| 17 |
+
fn=predict,
|
| 18 |
+
title="Gemma-3 QAT GGUF Chat",
|
| 19 |
+
description=f"Chat with the {MODEL_NAME} model via Ollama."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
)
|
| 21 |
|
| 22 |
+
# Launch the interface
|
| 23 |
+
iface.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|
|
|
|