Spaces:
Running
Running
| # Copyright 2024 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ============================================================================== | |
| # | |
| # Modified from diffusers==0.29.2 | |
| # | |
| # ============================================================================== | |
| from typing import Dict, Optional, Tuple, Union | |
| from dataclasses import dataclass | |
| import torch | |
| import torch.nn as nn | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| try: | |
| # This diffusers is modified and packed in the mirror. | |
| from diffusers.loaders import FromOriginalVAEMixin | |
| except ImportError: | |
| # Use this to be compatible with the original diffusers. | |
| from diffusers.loaders.single_file_model import FromOriginalModelMixin as FromOriginalVAEMixin | |
| from diffusers.utils.accelerate_utils import apply_forward_hook | |
| from diffusers.models.attention_processor import ( | |
| ADDED_KV_ATTENTION_PROCESSORS, | |
| CROSS_ATTENTION_PROCESSORS, | |
| Attention, | |
| AttentionProcessor, | |
| AttnAddedKVProcessor, | |
| AttnProcessor, | |
| ) | |
| from diffusers.models.modeling_outputs import AutoencoderKLOutput | |
| from diffusers.models.modeling_utils import ModelMixin | |
| from .vae import DecoderCausal3D, BaseOutput, DecoderOutput, DiagonalGaussianDistribution, EncoderCausal3D | |
| class DecoderOutput2(BaseOutput): | |
| sample: torch.FloatTensor | |
| posterior: Optional[DiagonalGaussianDistribution] = None | |
| class AutoencoderKLCausal3D(ModelMixin, ConfigMixin, FromOriginalVAEMixin): | |
| r""" | |
| A VAE model with KL loss for encoding images/videos into latents and decoding latent representations into images/videos. | |
| This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented | |
| for all models (such as downloading or saving). | |
| """ | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| in_channels: int = 3, | |
| out_channels: int = 3, | |
| down_block_types: Tuple[str] = ("DownEncoderBlockCausal3D",), | |
| up_block_types: Tuple[str] = ("UpDecoderBlockCausal3D",), | |
| block_out_channels: Tuple[int] = (64,), | |
| layers_per_block: int = 1, | |
| act_fn: str = "silu", | |
| latent_channels: int = 4, | |
| norm_num_groups: int = 32, | |
| sample_size: int = 32, | |
| sample_tsize: int = 64, | |
| scaling_factor: float = 0.18215, | |
| force_upcast: float = True, | |
| spatial_compression_ratio: int = 8, | |
| time_compression_ratio: int = 4, | |
| mid_block_add_attention: bool = True, | |
| ): | |
| super().__init__() | |
| self.time_compression_ratio = time_compression_ratio | |
| self.encoder = EncoderCausal3D( | |
| in_channels=in_channels, | |
| out_channels=latent_channels, | |
| down_block_types=down_block_types, | |
| block_out_channels=block_out_channels, | |
| layers_per_block=layers_per_block, | |
| act_fn=act_fn, | |
| norm_num_groups=norm_num_groups, | |
| double_z=True, | |
| time_compression_ratio=time_compression_ratio, | |
| spatial_compression_ratio=spatial_compression_ratio, | |
| mid_block_add_attention=mid_block_add_attention, | |
| ) | |
| self.decoder = DecoderCausal3D( | |
| in_channels=latent_channels, | |
| out_channels=out_channels, | |
| up_block_types=up_block_types, | |
| block_out_channels=block_out_channels, | |
| layers_per_block=layers_per_block, | |
| norm_num_groups=norm_num_groups, | |
| act_fn=act_fn, | |
| time_compression_ratio=time_compression_ratio, | |
| spatial_compression_ratio=spatial_compression_ratio, | |
| mid_block_add_attention=mid_block_add_attention, | |
| ) | |
| self.quant_conv = nn.Conv3d(2 * latent_channels, 2 * latent_channels, kernel_size=1) | |
| self.post_quant_conv = nn.Conv3d(latent_channels, latent_channels, kernel_size=1) | |
| self.use_slicing = False | |
| self.use_spatial_tiling = False | |
| self.use_temporal_tiling = False | |
| # only relevant if vae tiling is enabled | |
| self.tile_sample_min_tsize = sample_tsize | |
| self.tile_latent_min_tsize = sample_tsize // time_compression_ratio | |
| self.tile_sample_min_size = self.config.sample_size | |
| sample_size = ( | |
| self.config.sample_size[0] | |
| if isinstance(self.config.sample_size, (list, tuple)) | |
| else self.config.sample_size | |
| ) | |
| self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1))) | |
| self.tile_overlap_factor = 0.25 | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if isinstance(module, (EncoderCausal3D, DecoderCausal3D)): | |
| module.gradient_checkpointing = value | |
| def enable_temporal_tiling(self, use_tiling: bool = True): | |
| self.use_temporal_tiling = use_tiling | |
| def disable_temporal_tiling(self): | |
| self.enable_temporal_tiling(False) | |
| def enable_spatial_tiling(self, use_tiling: bool = True): | |
| self.use_spatial_tiling = use_tiling | |
| def disable_spatial_tiling(self): | |
| self.enable_spatial_tiling(False) | |
| def enable_tiling(self, use_tiling: bool = True): | |
| r""" | |
| Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | |
| compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | |
| processing larger videos. | |
| """ | |
| self.enable_spatial_tiling(use_tiling) | |
| self.enable_temporal_tiling(use_tiling) | |
| def disable_tiling(self): | |
| r""" | |
| Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing | |
| decoding in one step. | |
| """ | |
| self.disable_spatial_tiling() | |
| self.disable_temporal_tiling() | |
| def enable_slicing(self): | |
| r""" | |
| Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | |
| compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | |
| """ | |
| self.use_slicing = True | |
| def disable_slicing(self): | |
| r""" | |
| Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing | |
| decoding in one step. | |
| """ | |
| self.use_slicing = False | |
| # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors | |
| def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
| r""" | |
| Returns: | |
| `dict` of attention processors: A dictionary containing all attention processors used in the model with | |
| indexed by its weight name. | |
| """ | |
| # set recursively | |
| processors = {} | |
| def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
| if hasattr(module, "get_processor"): | |
| processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
| return processors | |
| for name, module in self.named_children(): | |
| fn_recursive_add_processors(name, module, processors) | |
| return processors | |
| # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
| def set_attn_processor( | |
| self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False | |
| ): | |
| r""" | |
| Sets the attention processor to use to compute attention. | |
| Parameters: | |
| processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
| The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
| for **all** `Attention` layers. | |
| If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
| processor. This is strongly recommended when setting trainable attention processors. | |
| """ | |
| count = len(self.attn_processors.keys()) | |
| if isinstance(processor, dict) and len(processor) != count: | |
| raise ValueError( | |
| f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
| f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
| ) | |
| def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
| if hasattr(module, "set_processor"): | |
| if not isinstance(processor, dict): | |
| module.set_processor(processor, _remove_lora=_remove_lora) | |
| else: | |
| module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
| for name, module in self.named_children(): | |
| fn_recursive_attn_processor(name, module, processor) | |
| # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor | |
| def set_default_attn_processor(self): | |
| """ | |
| Disables custom attention processors and sets the default attention implementation. | |
| """ | |
| if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): | |
| processor = AttnAddedKVProcessor() | |
| elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): | |
| processor = AttnProcessor() | |
| else: | |
| raise ValueError( | |
| f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" | |
| ) | |
| self.set_attn_processor(processor, _remove_lora=True) | |
| def encode( | |
| self, x: torch.FloatTensor, return_dict: bool = True | |
| ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]: | |
| """ | |
| Encode a batch of images/videos into latents. | |
| Args: | |
| x (`torch.FloatTensor`): Input batch of images/videos. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. | |
| Returns: | |
| The latent representations of the encoded images/videos. If `return_dict` is True, a | |
| [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned. | |
| """ | |
| assert len(x.shape) == 5, "The input tensor should have 5 dimensions." | |
| if self.use_temporal_tiling and x.shape[2] > self.tile_sample_min_tsize: | |
| return self.temporal_tiled_encode(x, return_dict=return_dict) | |
| if self.use_spatial_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): | |
| return self.spatial_tiled_encode(x, return_dict=return_dict) | |
| if self.use_slicing and x.shape[0] > 1: | |
| encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)] | |
| h = torch.cat(encoded_slices) | |
| else: | |
| h = self.encoder(x) | |
| moments = self.quant_conv(h) | |
| posterior = DiagonalGaussianDistribution(moments) | |
| if not return_dict: | |
| return (posterior,) | |
| return AutoencoderKLOutput(latent_dist=posterior) | |
| def _decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]: | |
| assert len(z.shape) == 5, "The input tensor should have 5 dimensions." | |
| if self.use_temporal_tiling and z.shape[2] > self.tile_latent_min_tsize: | |
| return self.temporal_tiled_decode(z, return_dict=return_dict) | |
| if self.use_spatial_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): | |
| return self.spatial_tiled_decode(z, return_dict=return_dict) | |
| z = self.post_quant_conv(z) | |
| dec = self.decoder(z) | |
| if not return_dict: | |
| return (dec,) | |
| return DecoderOutput(sample=dec) | |
| def decode( | |
| self, z: torch.FloatTensor, return_dict: bool = True, generator=None | |
| ) -> Union[DecoderOutput, torch.FloatTensor]: | |
| """ | |
| Decode a batch of images/videos. | |
| Args: | |
| z (`torch.FloatTensor`): Input batch of latent vectors. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. | |
| Returns: | |
| [`~models.vae.DecoderOutput`] or `tuple`: | |
| If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is | |
| returned. | |
| """ | |
| if self.use_slicing and z.shape[0] > 1: | |
| decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)] | |
| decoded = torch.cat(decoded_slices) | |
| else: | |
| decoded = self._decode(z).sample | |
| if not return_dict: | |
| return (decoded,) | |
| return DecoderOutput(sample=decoded) | |
| def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: | |
| blend_extent = min(a.shape[-2], b.shape[-2], blend_extent) | |
| for y in range(blend_extent): | |
| b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (y / blend_extent) | |
| return b | |
| def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: | |
| blend_extent = min(a.shape[-1], b.shape[-1], blend_extent) | |
| for x in range(blend_extent): | |
| b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (x / blend_extent) | |
| return b | |
| def blend_t(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: | |
| blend_extent = min(a.shape[-3], b.shape[-3], blend_extent) | |
| for x in range(blend_extent): | |
| b[:, :, x, :, :] = a[:, :, -blend_extent + x, :, :] * (1 - x / blend_extent) + b[:, :, x, :, :] * (x / blend_extent) | |
| return b | |
| def spatial_tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True, return_moments: bool = False) -> AutoencoderKLOutput: | |
| r"""Encode a batch of images/videos using a tiled encoder. | |
| When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several | |
| steps. This is useful to keep memory use constant regardless of image/videos size. The end result of tiled encoding is | |
| different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the | |
| tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the | |
| output, but they should be much less noticeable. | |
| Args: | |
| x (`torch.FloatTensor`): Input batch of images/videos. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. | |
| Returns: | |
| [`~models.autoencoder_kl.AutoencoderKLOutput`] or `tuple`: | |
| If return_dict is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain | |
| `tuple` is returned. | |
| """ | |
| overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor)) | |
| blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor) | |
| row_limit = self.tile_latent_min_size - blend_extent | |
| # Split video into tiles and encode them separately. | |
| rows = [] | |
| for i in range(0, x.shape[-2], overlap_size): | |
| row = [] | |
| for j in range(0, x.shape[-1], overlap_size): | |
| tile = x[:, :, :, i: i + self.tile_sample_min_size, j: j + self.tile_sample_min_size] | |
| tile = self.encoder(tile) | |
| tile = self.quant_conv(tile) | |
| row.append(tile) | |
| rows.append(row) | |
| result_rows = [] | |
| for i, row in enumerate(rows): | |
| result_row = [] | |
| for j, tile in enumerate(row): | |
| # blend the above tile and the left tile | |
| # to the current tile and add the current tile to the result row | |
| if i > 0: | |
| tile = self.blend_v(rows[i - 1][j], tile, blend_extent) | |
| if j > 0: | |
| tile = self.blend_h(row[j - 1], tile, blend_extent) | |
| result_row.append(tile[:, :, :, :row_limit, :row_limit]) | |
| result_rows.append(torch.cat(result_row, dim=-1)) | |
| moments = torch.cat(result_rows, dim=-2) | |
| if return_moments: | |
| return moments | |
| posterior = DiagonalGaussianDistribution(moments) | |
| if not return_dict: | |
| return (posterior,) | |
| return AutoencoderKLOutput(latent_dist=posterior) | |
| def spatial_tiled_decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]: | |
| r""" | |
| Decode a batch of images/videos using a tiled decoder. | |
| Args: | |
| z (`torch.FloatTensor`): Input batch of latent vectors. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. | |
| Returns: | |
| [`~models.vae.DecoderOutput`] or `tuple`: | |
| If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is | |
| returned. | |
| """ | |
| overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor)) | |
| blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor) | |
| row_limit = self.tile_sample_min_size - blend_extent | |
| # Split z into overlapping tiles and decode them separately. | |
| # The tiles have an overlap to avoid seams between tiles. | |
| rows = [] | |
| for i in range(0, z.shape[-2], overlap_size): | |
| row = [] | |
| for j in range(0, z.shape[-1], overlap_size): | |
| tile = z[:, :, :, i: i + self.tile_latent_min_size, j: j + self.tile_latent_min_size] | |
| tile = self.post_quant_conv(tile) | |
| decoded = self.decoder(tile) | |
| row.append(decoded) | |
| rows.append(row) | |
| result_rows = [] | |
| for i, row in enumerate(rows): | |
| result_row = [] | |
| for j, tile in enumerate(row): | |
| # blend the above tile and the left tile | |
| # to the current tile and add the current tile to the result row | |
| if i > 0: | |
| tile = self.blend_v(rows[i - 1][j], tile, blend_extent) | |
| if j > 0: | |
| tile = self.blend_h(row[j - 1], tile, blend_extent) | |
| result_row.append(tile[:, :, :, :row_limit, :row_limit]) | |
| result_rows.append(torch.cat(result_row, dim=-1)) | |
| dec = torch.cat(result_rows, dim=-2) | |
| if not return_dict: | |
| return (dec,) | |
| return DecoderOutput(sample=dec) | |
| def temporal_tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput: | |
| B, C, T, H, W = x.shape | |
| overlap_size = int(self.tile_sample_min_tsize * (1 - self.tile_overlap_factor)) | |
| blend_extent = int(self.tile_latent_min_tsize * self.tile_overlap_factor) | |
| t_limit = self.tile_latent_min_tsize - blend_extent | |
| # Split the video into tiles and encode them separately. | |
| row = [] | |
| for i in range(0, T, overlap_size): | |
| tile = x[:, :, i: i + self.tile_sample_min_tsize + 1, :, :] | |
| if self.use_spatial_tiling and (tile.shape[-1] > self.tile_sample_min_size or tile.shape[-2] > self.tile_sample_min_size): | |
| tile = self.spatial_tiled_encode(tile, return_moments=True) | |
| else: | |
| tile = self.encoder(tile) | |
| tile = self.quant_conv(tile) | |
| if i > 0: | |
| tile = tile[:, :, 1:, :, :] | |
| row.append(tile) | |
| result_row = [] | |
| for i, tile in enumerate(row): | |
| if i > 0: | |
| tile = self.blend_t(row[i - 1], tile, blend_extent) | |
| result_row.append(tile[:, :, :t_limit, :, :]) | |
| else: | |
| result_row.append(tile[:, :, :t_limit + 1, :, :]) | |
| moments = torch.cat(result_row, dim=2) | |
| posterior = DiagonalGaussianDistribution(moments) | |
| if not return_dict: | |
| return (posterior,) | |
| return AutoencoderKLOutput(latent_dist=posterior) | |
| def temporal_tiled_decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]: | |
| # Split z into overlapping tiles and decode them separately. | |
| B, C, T, H, W = z.shape | |
| overlap_size = int(self.tile_latent_min_tsize * (1 - self.tile_overlap_factor)) | |
| blend_extent = int(self.tile_sample_min_tsize * self.tile_overlap_factor) | |
| t_limit = self.tile_sample_min_tsize - blend_extent | |
| row = [] | |
| for i in range(0, T, overlap_size): | |
| tile = z[:, :, i: i + self.tile_latent_min_tsize + 1, :, :] | |
| if self.use_spatial_tiling and (tile.shape[-1] > self.tile_latent_min_size or tile.shape[-2] > self.tile_latent_min_size): | |
| decoded = self.spatial_tiled_decode(tile, return_dict=True).sample | |
| else: | |
| tile = self.post_quant_conv(tile) | |
| decoded = self.decoder(tile) | |
| if i > 0: | |
| decoded = decoded[:, :, 1:, :, :] | |
| row.append(decoded) | |
| result_row = [] | |
| for i, tile in enumerate(row): | |
| if i > 0: | |
| tile = self.blend_t(row[i - 1], tile, blend_extent) | |
| result_row.append(tile[:, :, :t_limit, :, :]) | |
| else: | |
| result_row.append(tile[:, :, :t_limit + 1, :, :]) | |
| dec = torch.cat(result_row, dim=2) | |
| if not return_dict: | |
| return (dec,) | |
| return DecoderOutput(sample=dec) | |
| def forward( | |
| self, | |
| sample: torch.FloatTensor, | |
| sample_posterior: bool = False, | |
| return_dict: bool = True, | |
| return_posterior: bool = False, | |
| generator: Optional[torch.Generator] = None, | |
| ) -> Union[DecoderOutput2, torch.FloatTensor]: | |
| r""" | |
| Args: | |
| sample (`torch.FloatTensor`): Input sample. | |
| sample_posterior (`bool`, *optional*, defaults to `False`): | |
| Whether to sample from the posterior. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`DecoderOutput`] instead of a plain tuple. | |
| """ | |
| x = sample | |
| posterior = self.encode(x).latent_dist | |
| if sample_posterior: | |
| z = posterior.sample(generator=generator) | |
| else: | |
| z = posterior.mode() | |
| dec = self.decode(z).sample | |
| if not return_dict: | |
| if return_posterior: | |
| return (dec, posterior) | |
| else: | |
| return (dec,) | |
| if return_posterior: | |
| return DecoderOutput2(sample=dec, posterior=posterior) | |
| else: | |
| return DecoderOutput2(sample=dec) | |
| # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections | |
| def fuse_qkv_projections(self): | |
| """ | |
| Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, | |
| key, value) are fused. For cross-attention modules, key and value projection matrices are fused. | |
| <Tip warning={true}> | |
| This API is 🧪 experimental. | |
| </Tip> | |
| """ | |
| self.original_attn_processors = None | |
| for _, attn_processor in self.attn_processors.items(): | |
| if "Added" in str(attn_processor.__class__.__name__): | |
| raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") | |
| self.original_attn_processors = self.attn_processors | |
| for module in self.modules(): | |
| if isinstance(module, Attention): | |
| module.fuse_projections(fuse=True) | |
| # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections | |
| def unfuse_qkv_projections(self): | |
| """Disables the fused QKV projection if enabled. | |
| <Tip warning={true}> | |
| This API is 🧪 experimental. | |
| </Tip> | |
| """ | |
| if self.original_attn_processors is not None: | |
| self.set_attn_processor(self.original_attn_processors) | |