Spaces:
Running
Running
Upload __init__.py
Browse files- hyvideo/__init__.py +357 -0
hyvideo/__init__.py
ADDED
|
@@ -0,0 +1,357 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
from typing import Optional, Tuple
|
| 3 |
+
from copy import deepcopy
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
from transformers import CLIPTextModel, CLIPTokenizer, AutoTokenizer, AutoModel
|
| 8 |
+
from transformers.utils import ModelOutput
|
| 9 |
+
|
| 10 |
+
from ..constants import TEXT_ENCODER_PATH, TOKENIZER_PATH
|
| 11 |
+
from ..constants import PRECISION_TO_TYPE
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def use_default(value, default):
|
| 15 |
+
return value if value is not None else default
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def load_text_encoder(
|
| 19 |
+
text_encoder_type,
|
| 20 |
+
text_encoder_precision=None,
|
| 21 |
+
text_encoder_path=None,
|
| 22 |
+
logger=None,
|
| 23 |
+
device=None,
|
| 24 |
+
):
|
| 25 |
+
if text_encoder_path is None:
|
| 26 |
+
text_encoder_path = TEXT_ENCODER_PATH[text_encoder_type]
|
| 27 |
+
if logger is not None:
|
| 28 |
+
logger.info(
|
| 29 |
+
f"Loading text encoder model ({text_encoder_type}) from: {text_encoder_path}"
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
if text_encoder_type == "clipL":
|
| 33 |
+
text_encoder = CLIPTextModel.from_pretrained(text_encoder_path)
|
| 34 |
+
text_encoder.final_layer_norm = text_encoder.text_model.final_layer_norm
|
| 35 |
+
elif text_encoder_type == "llm":
|
| 36 |
+
text_encoder = AutoModel.from_pretrained(
|
| 37 |
+
text_encoder_path, low_cpu_mem_usage=True
|
| 38 |
+
)
|
| 39 |
+
text_encoder.final_layer_norm = text_encoder.norm
|
| 40 |
+
else:
|
| 41 |
+
raise ValueError(f"Unsupported text encoder type: {text_encoder_type}")
|
| 42 |
+
# from_pretrained will ensure that the model is in eval mode.
|
| 43 |
+
|
| 44 |
+
if text_encoder_precision is not None:
|
| 45 |
+
text_encoder = text_encoder.to(dtype=PRECISION_TO_TYPE[text_encoder_precision])
|
| 46 |
+
|
| 47 |
+
text_encoder.requires_grad_(False)
|
| 48 |
+
|
| 49 |
+
if logger is not None:
|
| 50 |
+
logger.info(f"Text encoder to dtype: {text_encoder.dtype}")
|
| 51 |
+
|
| 52 |
+
if device is not None:
|
| 53 |
+
text_encoder = text_encoder.to(device)
|
| 54 |
+
|
| 55 |
+
return text_encoder, text_encoder_path
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def load_tokenizer(
|
| 59 |
+
tokenizer_type, tokenizer_path=None, padding_side="right", logger=None
|
| 60 |
+
):
|
| 61 |
+
if tokenizer_path is None:
|
| 62 |
+
tokenizer_path = TOKENIZER_PATH[tokenizer_type]
|
| 63 |
+
if logger is not None:
|
| 64 |
+
logger.info(f"Loading tokenizer ({tokenizer_type}) from: {tokenizer_path}")
|
| 65 |
+
|
| 66 |
+
if tokenizer_type == "clipL":
|
| 67 |
+
tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path, max_length=77)
|
| 68 |
+
elif tokenizer_type == "llm":
|
| 69 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 70 |
+
tokenizer_path, padding_side=padding_side
|
| 71 |
+
)
|
| 72 |
+
else:
|
| 73 |
+
raise ValueError(f"Unsupported tokenizer type: {tokenizer_type}")
|
| 74 |
+
|
| 75 |
+
return tokenizer, tokenizer_path
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
@dataclass
|
| 79 |
+
class TextEncoderModelOutput(ModelOutput):
|
| 80 |
+
"""
|
| 81 |
+
Base class for model's outputs that also contains a pooling of the last hidden states.
|
| 82 |
+
|
| 83 |
+
Args:
|
| 84 |
+
hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 85 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
| 86 |
+
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 87 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
|
| 88 |
+
hidden_states_list (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed):
|
| 89 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
| 90 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
| 91 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
| 92 |
+
text_outputs (`list`, *optional*, returned when `return_texts=True` is passed):
|
| 93 |
+
List of decoded texts.
|
| 94 |
+
"""
|
| 95 |
+
|
| 96 |
+
hidden_state: torch.FloatTensor = None
|
| 97 |
+
attention_mask: Optional[torch.LongTensor] = None
|
| 98 |
+
hidden_states_list: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 99 |
+
text_outputs: Optional[list] = None
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
class TextEncoder(nn.Module):
|
| 103 |
+
def __init__(
|
| 104 |
+
self,
|
| 105 |
+
text_encoder_type: str,
|
| 106 |
+
max_length: int,
|
| 107 |
+
text_encoder_precision: Optional[str] = None,
|
| 108 |
+
text_encoder_path: Optional[str] = None,
|
| 109 |
+
tokenizer_type: Optional[str] = None,
|
| 110 |
+
tokenizer_path: Optional[str] = None,
|
| 111 |
+
output_key: Optional[str] = None,
|
| 112 |
+
use_attention_mask: bool = True,
|
| 113 |
+
input_max_length: Optional[int] = None,
|
| 114 |
+
prompt_template: Optional[dict] = None,
|
| 115 |
+
prompt_template_video: Optional[dict] = None,
|
| 116 |
+
hidden_state_skip_layer: Optional[int] = None,
|
| 117 |
+
apply_final_norm: bool = False,
|
| 118 |
+
reproduce: bool = False,
|
| 119 |
+
logger=None,
|
| 120 |
+
device=None,
|
| 121 |
+
):
|
| 122 |
+
super().__init__()
|
| 123 |
+
self.text_encoder_type = text_encoder_type
|
| 124 |
+
self.max_length = max_length
|
| 125 |
+
self.precision = text_encoder_precision
|
| 126 |
+
self.model_path = text_encoder_path
|
| 127 |
+
self.tokenizer_type = (
|
| 128 |
+
tokenizer_type if tokenizer_type is not None else text_encoder_type
|
| 129 |
+
)
|
| 130 |
+
self.tokenizer_path = (
|
| 131 |
+
tokenizer_path if tokenizer_path is not None else text_encoder_path
|
| 132 |
+
)
|
| 133 |
+
self.use_attention_mask = use_attention_mask
|
| 134 |
+
if prompt_template_video is not None:
|
| 135 |
+
assert (
|
| 136 |
+
use_attention_mask is True
|
| 137 |
+
), "Attention mask is True required when training videos."
|
| 138 |
+
self.input_max_length = (
|
| 139 |
+
input_max_length if input_max_length is not None else max_length
|
| 140 |
+
)
|
| 141 |
+
self.prompt_template = prompt_template
|
| 142 |
+
self.prompt_template_video = prompt_template_video
|
| 143 |
+
self.hidden_state_skip_layer = hidden_state_skip_layer
|
| 144 |
+
self.apply_final_norm = apply_final_norm
|
| 145 |
+
self.reproduce = reproduce
|
| 146 |
+
self.logger = logger
|
| 147 |
+
|
| 148 |
+
self.use_template = self.prompt_template is not None
|
| 149 |
+
if self.use_template:
|
| 150 |
+
assert (
|
| 151 |
+
isinstance(self.prompt_template, dict)
|
| 152 |
+
and "template" in self.prompt_template
|
| 153 |
+
), f"`prompt_template` must be a dictionary with a key 'template', got {self.prompt_template}"
|
| 154 |
+
assert "{}" in str(self.prompt_template["template"]), (
|
| 155 |
+
"`prompt_template['template']` must contain a placeholder `{}` for the input text, "
|
| 156 |
+
f"got {self.prompt_template['template']}"
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
self.use_video_template = self.prompt_template_video is not None
|
| 160 |
+
if self.use_video_template:
|
| 161 |
+
if self.prompt_template_video is not None:
|
| 162 |
+
assert (
|
| 163 |
+
isinstance(self.prompt_template_video, dict)
|
| 164 |
+
and "template" in self.prompt_template_video
|
| 165 |
+
), f"`prompt_template_video` must be a dictionary with a key 'template', got {self.prompt_template_video}"
|
| 166 |
+
assert "{}" in str(self.prompt_template_video["template"]), (
|
| 167 |
+
"`prompt_template_video['template']` must contain a placeholder `{}` for the input text, "
|
| 168 |
+
f"got {self.prompt_template_video['template']}"
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
if "t5" in text_encoder_type:
|
| 172 |
+
self.output_key = output_key or "last_hidden_state"
|
| 173 |
+
elif "clip" in text_encoder_type:
|
| 174 |
+
self.output_key = output_key or "pooler_output"
|
| 175 |
+
elif "llm" in text_encoder_type or "glm" in text_encoder_type:
|
| 176 |
+
self.output_key = output_key or "last_hidden_state"
|
| 177 |
+
else:
|
| 178 |
+
raise ValueError(f"Unsupported text encoder type: {text_encoder_type}")
|
| 179 |
+
|
| 180 |
+
self.model, self.model_path = load_text_encoder(
|
| 181 |
+
text_encoder_type=self.text_encoder_type,
|
| 182 |
+
text_encoder_precision=self.precision,
|
| 183 |
+
text_encoder_path=self.model_path,
|
| 184 |
+
logger=self.logger,
|
| 185 |
+
device=device,
|
| 186 |
+
)
|
| 187 |
+
self.dtype = self.model.dtype
|
| 188 |
+
self.device = self.model.device
|
| 189 |
+
|
| 190 |
+
self.tokenizer, self.tokenizer_path = load_tokenizer(
|
| 191 |
+
tokenizer_type=self.tokenizer_type,
|
| 192 |
+
tokenizer_path=self.tokenizer_path,
|
| 193 |
+
padding_side="right",
|
| 194 |
+
logger=self.logger,
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
def __repr__(self):
|
| 198 |
+
return f"{self.text_encoder_type} ({self.precision} - {self.model_path})"
|
| 199 |
+
|
| 200 |
+
@staticmethod
|
| 201 |
+
def apply_text_to_template(text, template, prevent_empty_text=True):
|
| 202 |
+
"""
|
| 203 |
+
Apply text to template.
|
| 204 |
+
|
| 205 |
+
Args:
|
| 206 |
+
text (str): Input text.
|
| 207 |
+
template (str or list): Template string or list of chat conversation.
|
| 208 |
+
prevent_empty_text (bool): If Ture, we will prevent the user text from being empty
|
| 209 |
+
by adding a space. Defaults to True.
|
| 210 |
+
"""
|
| 211 |
+
if isinstance(template, str):
|
| 212 |
+
# Will send string to tokenizer. Used for llm
|
| 213 |
+
return template.format(text)
|
| 214 |
+
else:
|
| 215 |
+
raise TypeError(f"Unsupported template type: {type(template)}")
|
| 216 |
+
|
| 217 |
+
def text2tokens(self, text, data_type="image"):
|
| 218 |
+
"""
|
| 219 |
+
Tokenize the input text.
|
| 220 |
+
|
| 221 |
+
Args:
|
| 222 |
+
text (str or list): Input text.
|
| 223 |
+
"""
|
| 224 |
+
tokenize_input_type = "str"
|
| 225 |
+
if self.use_template:
|
| 226 |
+
if data_type == "image":
|
| 227 |
+
prompt_template = self.prompt_template["template"]
|
| 228 |
+
elif data_type == "video":
|
| 229 |
+
prompt_template = self.prompt_template_video["template"]
|
| 230 |
+
else:
|
| 231 |
+
raise ValueError(f"Unsupported data type: {data_type}")
|
| 232 |
+
if isinstance(text, (list, tuple)):
|
| 233 |
+
text = [
|
| 234 |
+
self.apply_text_to_template(one_text, prompt_template)
|
| 235 |
+
for one_text in text
|
| 236 |
+
]
|
| 237 |
+
if isinstance(text[0], list):
|
| 238 |
+
tokenize_input_type = "list"
|
| 239 |
+
elif isinstance(text, str):
|
| 240 |
+
text = self.apply_text_to_template(text, prompt_template)
|
| 241 |
+
if isinstance(text, list):
|
| 242 |
+
tokenize_input_type = "list"
|
| 243 |
+
else:
|
| 244 |
+
raise TypeError(f"Unsupported text type: {type(text)}")
|
| 245 |
+
|
| 246 |
+
kwargs = dict(
|
| 247 |
+
truncation=True,
|
| 248 |
+
max_length=self.max_length,
|
| 249 |
+
padding="max_length",
|
| 250 |
+
return_tensors="pt",
|
| 251 |
+
)
|
| 252 |
+
if tokenize_input_type == "str":
|
| 253 |
+
return self.tokenizer(
|
| 254 |
+
text,
|
| 255 |
+
return_length=False,
|
| 256 |
+
return_overflowing_tokens=False,
|
| 257 |
+
return_attention_mask=True,
|
| 258 |
+
**kwargs,
|
| 259 |
+
)
|
| 260 |
+
elif tokenize_input_type == "list":
|
| 261 |
+
return self.tokenizer.apply_chat_template(
|
| 262 |
+
text,
|
| 263 |
+
add_generation_prompt=True,
|
| 264 |
+
tokenize=True,
|
| 265 |
+
return_dict=True,
|
| 266 |
+
**kwargs,
|
| 267 |
+
)
|
| 268 |
+
else:
|
| 269 |
+
raise ValueError(f"Unsupported tokenize_input_type: {tokenize_input_type}")
|
| 270 |
+
|
| 271 |
+
def encode(
|
| 272 |
+
self,
|
| 273 |
+
batch_encoding,
|
| 274 |
+
use_attention_mask=None,
|
| 275 |
+
output_hidden_states=False,
|
| 276 |
+
do_sample=None,
|
| 277 |
+
hidden_state_skip_layer=None,
|
| 278 |
+
return_texts=False,
|
| 279 |
+
data_type="image",
|
| 280 |
+
device=None,
|
| 281 |
+
):
|
| 282 |
+
"""
|
| 283 |
+
Args:
|
| 284 |
+
batch_encoding (dict): Batch encoding from tokenizer.
|
| 285 |
+
use_attention_mask (bool): Whether to use attention mask. If None, use self.use_attention_mask.
|
| 286 |
+
Defaults to None.
|
| 287 |
+
output_hidden_states (bool): Whether to output hidden states. If False, return the value of
|
| 288 |
+
self.output_key. If True, return the entire output. If set self.hidden_state_skip_layer,
|
| 289 |
+
output_hidden_states will be set True. Defaults to False.
|
| 290 |
+
do_sample (bool): Whether to sample from the model. Used for Decoder-Only LLMs. Defaults to None.
|
| 291 |
+
When self.produce is False, do_sample is set to True by default.
|
| 292 |
+
hidden_state_skip_layer (int): Number of hidden states to hidden_state_skip_layer. 0 means the last layer.
|
| 293 |
+
If None, self.output_key will be used. Defaults to None.
|
| 294 |
+
return_texts (bool): Whether to return the decoded texts. Defaults to False.
|
| 295 |
+
"""
|
| 296 |
+
device = self.model.device if device is None else device
|
| 297 |
+
use_attention_mask = use_default(use_attention_mask, self.use_attention_mask)
|
| 298 |
+
hidden_state_skip_layer = use_default(
|
| 299 |
+
hidden_state_skip_layer, self.hidden_state_skip_layer
|
| 300 |
+
)
|
| 301 |
+
do_sample = use_default(do_sample, not self.reproduce)
|
| 302 |
+
attention_mask = (
|
| 303 |
+
batch_encoding["attention_mask"].to(device) if use_attention_mask else None
|
| 304 |
+
)
|
| 305 |
+
outputs = self.model(
|
| 306 |
+
input_ids=batch_encoding["input_ids"].to(device),
|
| 307 |
+
attention_mask=attention_mask,
|
| 308 |
+
output_hidden_states=output_hidden_states
|
| 309 |
+
or hidden_state_skip_layer is not None,
|
| 310 |
+
)
|
| 311 |
+
if hidden_state_skip_layer is not None:
|
| 312 |
+
last_hidden_state = outputs.hidden_states[-(hidden_state_skip_layer + 1)]
|
| 313 |
+
# Real last hidden state already has layer norm applied. So here we only apply it
|
| 314 |
+
# for intermediate layers.
|
| 315 |
+
if hidden_state_skip_layer > 0 and self.apply_final_norm:
|
| 316 |
+
last_hidden_state = self.model.final_layer_norm(last_hidden_state)
|
| 317 |
+
else:
|
| 318 |
+
last_hidden_state = outputs[self.output_key]
|
| 319 |
+
|
| 320 |
+
# Remove hidden states of instruction tokens, only keep prompt tokens.
|
| 321 |
+
if self.use_template:
|
| 322 |
+
if data_type == "image":
|
| 323 |
+
crop_start = self.prompt_template.get("crop_start", -1)
|
| 324 |
+
elif data_type == "video":
|
| 325 |
+
crop_start = self.prompt_template_video.get("crop_start", -1)
|
| 326 |
+
else:
|
| 327 |
+
raise ValueError(f"Unsupported data type: {data_type}")
|
| 328 |
+
if crop_start > 0:
|
| 329 |
+
last_hidden_state = last_hidden_state[:, crop_start:]
|
| 330 |
+
attention_mask = (
|
| 331 |
+
attention_mask[:, crop_start:] if use_attention_mask else None
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
if output_hidden_states:
|
| 335 |
+
return TextEncoderModelOutput(
|
| 336 |
+
last_hidden_state, attention_mask, outputs.hidden_states
|
| 337 |
+
)
|
| 338 |
+
return TextEncoderModelOutput(last_hidden_state, attention_mask)
|
| 339 |
+
|
| 340 |
+
def forward(
|
| 341 |
+
self,
|
| 342 |
+
text,
|
| 343 |
+
use_attention_mask=None,
|
| 344 |
+
output_hidden_states=False,
|
| 345 |
+
do_sample=False,
|
| 346 |
+
hidden_state_skip_layer=None,
|
| 347 |
+
return_texts=False,
|
| 348 |
+
):
|
| 349 |
+
batch_encoding = self.text2tokens(text)
|
| 350 |
+
return self.encode(
|
| 351 |
+
batch_encoding,
|
| 352 |
+
use_attention_mask=use_attention_mask,
|
| 353 |
+
output_hidden_states=output_hidden_states,
|
| 354 |
+
do_sample=do_sample,
|
| 355 |
+
hidden_state_skip_layer=hidden_state_skip_layer,
|
| 356 |
+
return_texts=return_texts,
|
| 357 |
+
)
|